Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C\), mặt bên \(SAC\) là tam giác đều

Câu hỏi số 230559:
Thông hiểu

Cho hình chóp \(S.ABC\) có đáy \(ABC\) là tam giác vuông tại \(C\), mặt bên \(SAC\) là tam giác đều và nằm trong mặt phẳng vuông góc với đáy. Gọi \(I\) là trung điểm của \(SC\). Có bao nhiêu mệnh đề đúng trong các mệnh đề sau?

(I) \(AI\bot SC.\).

(II) \(\left( SBC \right)\bot \left( SAC \right).\)

(III) \(AI\bot BC.\)    

(IV)  \(\left( ABI \right)\bot \left( SBC \right).\)

Đáp án đúng là: D

Quảng cáo

Câu hỏi:230559
Phương pháp giải

Sử dụng các định lí về hai mặt phẳng vuông góc

Giải chi tiết

Tam giác \(SAC\) đều có \(I\) là trung điểm của \(SC\) nên \(AI\bot SC\).

\(\Rightarrow \) (I) đúng.

Gọi \(H\) là trung điểm \(AC\) suy ra \(SH\bot AC\). Mà \(\left( SAC \right)\bot \left( ABC \right)\) theo giao tuyến \(AC\) nên \(SH\bot \left( ABC \right)\) do đó \(SH\bot BC\). Hơn nữa theo giả thiết tam giác \(ABC\) vuông tại \(C\) nên \(BC\bot AC\).

Từ đó suy ra \(BC\bot \left( SAC \right)\Rightarrow BC\bot AI.\) Do đó đáp án (III) đúng.

Từ mệnh đề (I) và (III) suy ra mệnh đề (IV) đúng.

Ta có: \(\begin{array}{l}\left\{ \begin{array}{l}BC \bot AC\\BC \bot AH\end{array} \right. \Rightarrow BC \bot \left( {SAC} \right)\\BC \subset \left( {SBC} \right) \Rightarrow \left( {SBC} \right) \bot \left( {SAC} \right)\end{array}\).

Suy ra (II) đúng.

Vậy cả 4 mệnh đề trên đều đúng.

Chọn D.

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com