`

Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a\). Đường thẳng \(SO\) vuông góc với mặt phẳng đáy \(\left( ABCD \right)\) và \(SO=\frac{a\sqrt{3}}{2}\). Tính góc giữa hai mặt phẳng \(\left( SBC \right)\) và \(\left( ABCD \right)\).

Câu 230601:

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\) là hình vuông tâm \(O\), cạnh \(a\). Đường thẳng \(SO\) vuông góc với mặt phẳng đáy \(\left( ABCD \right)\) và \(SO=\frac{a\sqrt{3}}{2}\). Tính góc giữa hai mặt phẳng \(\left( SBC \right)\) và \(\left( ABCD \right)\).

A.

 \({{30}^{0}}.\)                     

B.

 \({{45}^{0}}.\)                     

C.

 \({{60}^{0}}.\)                       

D.  \({{90}^{0}}.\)

Câu hỏi : 230601

Phương pháp giải:

Sử dụng phương pháp xác định góc giữa hai mặt phẳng và áp dụng các hệ thức lượng trong tam giác vuông

  • Đáp án : C
    (3) bình luận (0) lời giải

    Giải chi tiết:

    Gọi \(Q\) là trung điểm \(BC\), suy ra \(OQ\bot BC\).

    Ta có \(\left\{ \begin{array}{l}BC \bot OQ\\BC \bot SO\end{array} \right. \Rightarrow BC \bot \left( {SOQ} \right) \Rightarrow BC \bot SQ.\)

    Do đó

    \(\left\{ \begin{array}{l}\left( {SBC} \right) \cap \left( {ABCD} \right) = BC\\\left( {SBC} \right) \supset SQ \bot BC\\\left( {ABCD} \right) \supset OQ \bot BC\end{array} \right. \Rightarrow \widehat {\left( {\left( {SBC} \right);\left( {ABCD} \right)} \right)} = \widehat {\left( {SQ;OQ} \right)} = \widehat {SQO}.\)

    Tam giác vuông \(SOQ\), có \(\tan \widehat{SQO}=\frac{SO}{OQ}=\sqrt{3}\Rightarrow \widehat{SQO}={{60}^{0}}\)

    Vậy mặt phẳng \(\left( SBC \right)\) hợp với mặt đáy \(\left( ABCD \right)\) một góc \({{60}^{0}}.\)

    Chọn C.

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com