Để giải bất phương trình \(\ln {{2x} \over {x - 1}} > 0\,\,\,\left( * \right)\), một học sinh lập
Để giải bất phương trình \(\ln {{2x} \over {x - 1}} > 0\,\,\,\left( * \right)\), một học sinh lập luận qua ba bước như sau:
Bước 1: Điều kiện \({{2x} \over {x - 1}} > 0 \Leftrightarrow \left[ \matrix{ x < 0 \hfill \cr x > 1 \hfill \cr} \right.\,\,\,\,\left( 1 \right)\)
Bước 2: Ta có: \(\ln {{2x} \over {x - 1}} > 0 \Leftrightarrow \ln {{2x} \over {x - 1}} > \ln 1 \Leftrightarrow {{2x} \over {x - 1}} > 1\,\,\,\,\left( 2 \right)\)
Bước 3: \(\left( 2 \right) \Leftrightarrow 2x > x - 1 \Leftrightarrow x > - 1\,\,\,\,\left( 3 \right)\)
Kết hợp (3) và (1) ta được: \(\left[ \matrix{ - 1 < x < 0 \hfill \cr x > 1 \hfill \cr} \right.\)
Vậy tập nghiệm của bất phương trình là \(\left( { - 1;0} \right) \cup \left( {1; + \infty } \right)\)
Hỏi lập luận trên là đúng hay sai ? Nếu sai thì sai từ bước nào ?
Đáp án đúng là: D
Quảng cáo
Xét tính đúng sai ở từng bước.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












