Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Mặt cầu (S) đi qua bốn điểm \(M\left( 2;2;2 \right),\) \(N\left( 4;0;2 \right),\) \(P\left( 4;2;0 \right),\)

Câu hỏi số 231968:
Vận dụng

Mặt cầu (S) đi qua bốn điểm \(M\left( 2;2;2 \right),\) \(N\left( 4;0;2 \right),\) \(P\left( 4;2;0 \right),\) \(Q\left( 4;2;2 \right)\)  thì tâm I của (S) có tọa độ là :

Đáp án đúng là: B

Quảng cáo

Câu hỏi:231968
Phương pháp giải

Gọi phương trình mặt cầu có dạng \({{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2ax+2by+2cz+d=0\,\,\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-d>0 \right)\)

Thay tọa độ các điểm M, N, P, Q vào phương trình mặt cầu, suy ra hệ bốn phương trình bốn ẩn a, b, c, d. Giải hệ phương trình và suy ra tọa độ tâm \(I\left( -a;-b;-c \right)\) của mặt cầu.

Giải chi tiết

Gọi phương trình mặt cầu có dạng \(\left( S \right):\,\,{{x}^{2}}+{{y}^{2}}+{{z}^{2}}+2ax+2by+2cz+d=0\,\,\left( {{a}^{2}}+{{b}^{2}}+{{c}^{2}}-d>0 \right)\)

Vì \(M,N,P,Q\in \left( S \right)\Rightarrow \) ta có hệ phương trình

\(\left\{ \begin{array}{l}{2^2} + {2^2} + {2^2} + 4a + 4b + 4c + d = 0\,\,\\{4^2} + {0^2} + {2^2} + 8a + 4c + d = 0\,\,\\{4^2} + {2^2} + {0^2} + 8a + 4b + d = 0\,\,\\{4^2} + {2^2} + {2^2} + 8a + 4b + 4c + d = 0\,\,\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a =  - 3\\b =  - 1\\c =  - 1\\d = 8\end{array} \right. \Rightarrow I\left( {3;1;1} \right)\) là tâm của mặt cầu.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com