Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)=\sqrt{x+1}\). Tính đạo hàm của hàm số tại điểm \({{x}_{0}}=1\)

Câu hỏi số 232072:
Nhận biết

Cho hàm số \(f\left( x \right)=\sqrt{x+1}\). Tính đạo hàm của hàm số tại điểm \({{x}_{0}}=1\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:232072
Phương pháp giải

Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là \(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) (nếu tồn tại).

Giải chi tiết

TXĐ: \(D=\left[ -1;+\infty  \right)\) 

\(f'\left( 1 \right)=\underset{x\to 1}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{\sqrt{x+1}-\sqrt{2}}{x-1}=\underset{x\to 1}{\mathop{\lim }}\,\frac{x+1-2}{\left( x-1 \right)\left( \sqrt{x+1}+\sqrt{2} \right)}=\underset{x\to 1}{\mathop{\lim }}\,\frac{1}{\sqrt{x+1}+\sqrt{2}}=\frac{1}{2\sqrt{2}}=\frac{\sqrt{2}}{4}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com