Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4}

Câu hỏi số 232081:
Thông hiểu

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}\dfrac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{x^2}\,\,\,khi\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,x = 0\end{array} \right.\). Giá trị của \(f'\left( 0 \right)\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:232081
Phương pháp giải

Đạo hàm của hàm số \(y=f\left( x \right)\) tại điểm \(x={{x}_{0}}\) là \(f'\left( {{x}_{0}} \right)=\underset{x\to {{x}_{0}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( {{x}_{0}} \right)}{x-{{x}_{0}}}\) (nếu tồn tại).

Giải chi tiết

Để hàm số có đạo hàm tại x = 0, trước hết hàm số phải liên tục tại x = 0.

Ta có :

\(\begin{array}{l}\mathop {\lim }\limits_{x \to 0} f\left( x \right) = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{4{x^2} + 8}} - \sqrt {8{x^2} + 4} }}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt[3]{{4{x^2} + 8}} - 2}}{{{x^2}}} - \mathop {\lim }\limits_{x \to 0} \frac{{\sqrt {8{x^2} + 4}  - 2}}{{{x^2}}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{{4{x^2}}}{{{x^2}\left( {{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4} \right)}} - \mathop {\lim }\limits_{x \to 0} \frac{{8{x^2}}}{{{x^2}\left( {\sqrt {8{x^2} + 4}  + 2} \right)}}\\ = \mathop {\lim }\limits_{x \to 0} \frac{4}{{{{\sqrt[3]{{4{x^2} + 8}}}^2} + 2\sqrt[3]{{4{x^2} + 8}} + 4}} - \mathop {\lim }\limits_{x \to 0} \frac{8}{{\sqrt {8{x^2} + 4}  + 2}} = \frac{1}{3} - 2 =  - \frac{5}{3}\end{array}\)

\(f\left( 0 \right) = 0\)

\( \Rightarrow \mathop {\lim }\limits_{x \to 0} f\left( x \right) \ne f\left( 0 \right)\), do đó hàm số không liên tục tại \(x = 0\).

Vậy hàm số không có đạo hàm tại \(x = 0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com