Với hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \frac{\pi }{x}\,\,khi\,\,x \ne
Với hàm số \(f\left( x \right) = \left\{ \begin{array}{l}x\sin \frac{\pi }{x}\,\,khi\,\,x \ne 0\\0\,\,\,\,\,\,\,\,\,\,\,\,\,\,khi\,\,x = 0\end{array} \right.\) . Để tìm đạo hàm \(f'\left( 0 \right)\) một học sinh lập luận qua các bước sau:
Bước 1: \(\left| f\left( x \right) \right|=\left| x \right|\left| \sin \frac{\pi }{x} \right|\le \left| x \right|\)
Bước 2: Khi \(x\to 0\) thì \(\left| x \right|\to 0\) nên \(\left| f\left( x \right) \right|\to 0\Rightarrow f\left( x \right)\to 0\)
Bước 3: Do \(\underset{x\to {{0}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{0}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 0 \right)=0\) nên hàm số liên tục tại x = 0.
Bước 4: Từ f(x) liên tục tại \(x=0\Rightarrow f\left( x \right)\) có đạo hàm tại x = 0.
Lập luận trên nếu sai thì bắt đầu từ bước nào?
Đáp án đúng là: D
Quảng cáo
Để hàm số có đạo hàm tại x0 thì hàm số liên tục tại x0, điều ngược lại chưa chắc đúng.
Đáp án cần chọn là: D
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












