Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx\,\,khi\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,khi\,\,x

Câu hỏi số 232088:
Vận dụng

Cho hàm số \(f\left( x \right) = \left\{ \begin{array}{l}a{x^2} + bx\,\,khi\,\,x \ge 1\\2x - 1\,\,\,\,\,\,\,khi\,\,x < 1\end{array} \right.\). Tìm a, b để hàm số có đạo hàm tại x = 1.

Đáp án đúng là: C

Quảng cáo

Câu hỏi:232088
Phương pháp giải

+) Tìm điều kiện để hàm số liên tục tại x = 1: \(\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)\)

+) Tìm điều kiện để hàm số có đạo hàm tại x = 1: \(f'\left( 1 \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}\)

Giải chi tiết

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ + }} \left( {a{x^2} + bx} \right) = a + b = f\left( 1 \right)\\\mathop {\lim }\limits_{x \to {1^ - }} f\left( x \right) = \mathop {\lim }\limits_{x \to {1^ - }} \left( {2x - 1} \right) = 1\end{array}\)

Để hàm số liên tục tại x = 1 thì \(\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,f\left( x \right)=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,f\left( x \right)=f\left( 1 \right)\Leftrightarrow a+b=1\,\,\,\left( 1 \right)\)

Khi đó ta có: \(f'\left( 1 \right)=\underset{x\to 1}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}\)

\(\begin{array}{l}\mathop {\lim }\limits_{x \to {1^ + }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{a{x^2} + bx - \left( {a + b} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \frac{{a\left( {{x^2} - 1} \right) + b\left( {x - 1} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ + }} \left[ {a\left( {x + 1} \right) + b} \right] = 2a + b\\\mathop {\lim }\limits_{x \to {1^ - }} \frac{{f\left( x \right) - f\left( 1 \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 1 - \left( {a + b} \right)}}{{x - 1}} = \mathop {\lim }\limits_{x \to {1^ - }} \frac{{2x - 2}}{{x - 1}} = 2\end{array}\)

Để hàm số có đạo hàm tại x = 1 thì \(f'\left( 1 \right)=\underset{x\to {{1}^{+}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}=\underset{x\to {{1}^{-}}}{\mathop{\lim }}\,\frac{f\left( x \right)-f\left( 1 \right)}{x-1}\Leftrightarrow 2a+b=2\,\,\,\left( 2 \right)\)

Từ (1) và (2) ta có hệ: \(\left\{ \begin{array}{l}a + b = 1\\2a + b = 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 0\end{array} \right.\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com