Số tiệm cận ngang của đồ thị hàm số \(y=\frac{x+\sqrt{x-1}}{\sqrt{{{x}^{2}}+1}}\) là:
Số tiệm cận ngang của đồ thị hàm số \(y=\frac{x+\sqrt{x-1}}{\sqrt{{{x}^{2}}+1}}\) là:
Đáp án đúng là: B
Quảng cáo
+) Đường thẳng \(x=a\) được gọi là TCĐ của đồ thị hàm số \(y=f\left( x \right)\) nếu \(\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=\pm \infty .\)
+) Đường thẳng \(y=b\) được gọi là TCN của đồ thị hàm số \(y=f\left( x \right)\) nếu \(\underset{x\to \pm \infty }{\mathop{\lim }}\,f\left( x \right)=b.\)
+) Sử dụng các quy tắc tính giới hạn của hàm số để tìm số đường TCN của đồ thị hàm số.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












