Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Số tiệm cận ngang của đồ thị hàm số \(y=\frac{x+\sqrt{x-1}}{\sqrt{{{x}^{2}}+1}}\) là:

Câu hỏi số 233094:
Vận dụng

Số tiệm cận ngang của đồ thị hàm số \(y=\frac{x+\sqrt{x-1}}{\sqrt{{{x}^{2}}+1}}\) là:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:233094
Phương pháp giải

+) Đường thẳng \(x=a\) được gọi là TCĐ của đồ thị hàm số \(y=f\left( x \right)\) nếu \(\underset{x\to a}{\mathop{\lim }}\,f\left( x \right)=\pm \infty .\)

+) Đường thẳng \(y=b\) được gọi là TCN của đồ thị hàm số \(y=f\left( x \right)\) nếu \(\underset{x\to \pm \infty }{\mathop{\lim }}\,f\left( x \right)=b.\)

+) Sử dụng các quy tắc tính giới hạn của hàm số để tìm số đường TCN của đồ thị hàm số.

Giải chi tiết

 ĐK: \(x\ge 1.\) Ta có: \(\underset{x\to +\infty }{\mathop{\lim }}\,\frac{x+\sqrt{x-1}}{\sqrt{{{x}^{2}}+1}}=\underset{x\to +\infty }{\mathop{\lim }}\,\frac{1+\sqrt{\frac{1}{x}-\frac{1}{{{x}^{2}}}}}{\sqrt{1+\frac{1}{{{x}^{2}}}}}=1.\) Vậy đồ thị hàm số có 1 đường tiệm cận ngang \(y=1\).

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com