Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính tích phân \(I=\int\limits_{1}^{2}{\frac{{{x}^{2}}+2\ln x}{x}dx}\) ta được:

Câu hỏi số 233208:
Nhận biết

Tính tích phân \(I=\int\limits_{1}^{2}{\frac{{{x}^{2}}+2\ln x}{x}dx}\) ta được:

Đáp án đúng là: B

Quảng cáo

Câu hỏi:233208
Phương pháp giải

Sử dụng phương pháp đăt ẩn phụ, đặt \(t=\ln x\)

Giải chi tiết

Đặt \(t=\ln x\Leftrightarrow dt=\frac{dx}{x}\) và \(x={{e}^{t}}\)

Đổi cận \(\left\{ \begin{array}{l}x = 1 \Leftrightarrow t = 0\\x = 2 \Leftrightarrow t = \ln 2\end{array} \right.\), khi đó

\(I=\int\limits_{1}^{2}{\frac{{{x}^{2}}+2\ln x}{x}dx}=\int\limits_{0}^{\ln 2}{\left( {{e}^{2t}}+2t \right)dt}=\left. \left( \frac{1}{2}{{e}^{2t}}+{{t}^{2}} \right) \right|_{0}^{\ln 2}=2+{{\ln }^{2}}2-\frac{1}{2}=\frac{3}{2}+{{\ln }^{2}}2\)

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com