Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tính tích phân \(I=\int\limits_{e}^{e^2}{\frac{dx}{x\ln x\ln ex}}\) ta được kết quả có dạng \(\ln

Câu hỏi số 233210:
Thông hiểu

Tính tích phân \(I=\int\limits_{e}^{e^2}{\frac{dx}{x\ln x\ln ex}}\) ta được kết quả có dạng \(\ln \frac{a}{b}\) (với \(\frac{a}{b}\) là phân số tối giản), khi đó a – b bằng:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:233210
Phương pháp giải

Đặt \(t=\ln x\), sử dụng công thức \(\ln ab=\ln a+\ln b\)

Giải chi tiết

Ta có: \(I=\int\limits_{e}^{{{e}^{2}}}{\frac{dx}{x\ln x\ln ex}}=\int\limits_{e}^{{{e}^{2}}}{\frac{dx}{x\ln x\left( 1+\ln x \right)}}\)

Đặt \(t=\ln x\Leftrightarrow dt=\frac{dx}{x}\)

Đổi cận: \(\left\{ \begin{array}{l}x = e \Leftrightarrow t = 1\\x = {e^2} \Leftrightarrow t = 2\end{array} \right.\), khi đó

\(\begin{array}{l}I = \int\limits_1^2 {\frac{{dt}}{{t\left( {t + 1} \right)}}}  = \int\limits_1^2 {\left( {\frac{1}{t} - \frac{1}{{t + 1}}} \right)dx}  = \left. {\left( {\ln \left| t \right| - \ln \left| {t + 1} \right|} \right)} \right|_1^2 = \left. {\ln \left| {\frac{t}{{t + 1}}} \right|} \right|_1^2\\\,\,\, = \ln \frac{2}{3} - \ln \frac{1}{2} = \ln \frac{4}{3} = \ln \frac{a}{b} \Leftrightarrow \left\{ \begin{array}{l}a = 4\\b = 3\end{array} \right. \Leftrightarrow a - b = 1\end{array}\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com