Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tập nghiệm của bất phương trình: \(\left| {{x}^{2}}-5x-2 \right|\ge 3x-1\)

Câu hỏi số 233781:
Thông hiểu

Tập nghiệm của bất phương trình: \(\left| {{x}^{2}}-5x-2 \right|\ge 3x-1\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:233781
Phương pháp giải

Sử dụng phép biến đổi tương đương: Với \(a\ge 0\)  thì \(|x| \ge a \Leftrightarrow \left[ \begin{array}{l}x \ge a\\x \le  - a\end{array} \right.\)

Giải chi tiết

+) \(TH1:\,3x-1<0\Leftrightarrow x<\frac{1}{3}\) , bất phương trình luôn đúng.

+) TH2:\(3x-1\ge 0\Leftrightarrow x\ge \frac{1}{3}\). Ta có

 \(\begin{array}{l}\left| {{x^2} - 5x - 2} \right| \ge 3x - 1\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 5x - 2 \ge 3x - 1\\{x^2} - 5x - 2 \le  - 3x + 1\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}{x^2} - 8x - 1 \ge 0\\{x^2} - 2x - 3 \le 0\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 4 + \sqrt {17} \\x \le 4 - \sqrt {17} \\ - 1 \le x \le 3\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}x \ge 4 + \sqrt {17} \\x \le 3\end{array} \right.\end{array}\)

Kết hợp điều kiện: \(x\ge \frac{1}{3}\) ta có nghiệm trong TH2 là: \(\left[ \begin{array}{l}x \ge 4 + \sqrt {17} \\\frac{1}{3} \le x \le 3\end{array} \right.\)

Kết hợp hai trường hợp ta có nghiệm của bất phương trình là:\(S=\left( -\infty ;3 \right]\cup \left[ 4+\sqrt{17};+\infty  \right).\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com