Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, tam giác SBC là tam giác đều cạnh a và

Câu hỏi số 235257:
Nhận biết

Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, tam giác SBC là tam giác đều cạnh a và nằm trong mặt phẳng vuông góc với đáy. Tính khoảng cách giữa hai đường thẳng SA và BC.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:235257
Phương pháp giải

Dựa vào cách xác định mặt phẳng chứa đường thẳng này và vuông góc với đường thẳng còn lại.

Giải chi tiết

Gọi H là trung điểm của BC khi đó \(SH\bot BC\).

Mặt khác \(\left( SBC \right)\bot \left( ABC \right)\) do đó \(SH\bot \left( ABC \right)\).

Ta có \(SH=\frac{a\sqrt{3}}{2}\) và \(AB=AC=\frac{a}{\sqrt{2}};AH=\frac{BC}{2}=\frac{a}{2}\).

Do \(\left\{ \begin{array}{l}BC \bot AH\\BC \bot SH\end{array} \right. \Rightarrow BC \bot \left( {SHA} \right)\). Dựng \(HK\bot SA\) khi đó \(HK\) là đoạn vuông góc chung của \(BC\) và \(SA\).

Lại có \(HK=\frac{SH.AH}{\sqrt{S{{H}^{2}}+H{{A}^{2}}}}=\frac{a\sqrt{3}}{4}\). Vậy \(d\left( SA;BC \right)=\frac{a\sqrt{3}}{4}.\)

Chọn B.

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com