Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(f\left( x \right) = {\left( {\sqrt x  - {1 \over {\sqrt x }}} \right)^3}\). Hàm số có đạo hàm

Câu hỏi số 236386:
Vận dụng

Cho hàm số \(f\left( x \right) = {\left( {\sqrt x  - {1 \over {\sqrt x }}} \right)^3}\). Hàm số có đạo hàm \(f'\left( x \right)\) bằng:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:236386
Phương pháp giải

Sử dụng khai triển hằng đẳng thức \({\left( {a + b} \right)^3}\), đưa các hạng tử về dạng \({x^n}\) và sử dụng công thức \(\left( {{x^n}} \right)' = n{x^{n - 1}}\).

Giải chi tiết

\(\eqalign{  & f\left( x \right) = {\left( {\sqrt x  - {1 \over {\sqrt x }}} \right)^3} = {\left( {\sqrt x } \right)^3} - 3{\left( {\sqrt x } \right)^2}.{1 \over {\sqrt x }} + 3\sqrt x {\left( {{1 \over {\sqrt x }}} \right)^2} - {\left( {{1 \over {\sqrt x }}} \right)^3}  \cr   & f\left( x \right) = {x^{{3 \over 2}}} - 3\sqrt x  + {3 \over {\sqrt x }} - {1 \over {{x^{{3 \over 2}}}}}  \cr   & f\left( x \right) = {x^{{3 \over 2}}} - 3\sqrt x  + 3{x^{ - {1 \over 2}}} - {x^{ - {3 \over 2}}}  \cr   & f'\left( x \right) = {3 \over 2}{x^{{3 \over 2} - 1}} - {3 \over {2\sqrt x }} + 3.\left( { - {1 \over 2}} \right){x^{ - {1 \over 2} - 1}} + {3 \over 2}{x^{ - {3 \over 2} - 1}}  \cr   & f'\left( x \right) = {3 \over 2}\sqrt x  - {3 \over {2\sqrt x }} - {3 \over 2}{x^{ - {3 \over 2}}} + {3 \over 2}{x^{ - {5 \over 2}}}  \cr   & f'\left( x \right) = {3 \over 2}\left( {\sqrt x  - {1 \over {\sqrt x }} - {1 \over {x\sqrt x }} + {1 \over {{x^2}\sqrt x }}} \right) \cr} \)

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com