Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Rút gọn biểu thức \(P=\sqrt{a.\sqrt[3]{{{a}^{2}}.\sqrt[4]{\frac{1}{a}}}}:\sqrt[24]{{{a}^{7}}},\ \ \left( a>0

Câu hỏi số 237760:
Thông hiểu

Rút gọn biểu thức \(P=\sqrt{a.\sqrt[3]{{{a}^{2}}.\sqrt[4]{\frac{1}{a}}}}:\sqrt[24]{{{a}^{7}}},\ \ \left( a>0 \right)\) ta được biểu thức dạng \({{a}^{\frac{m}{n}}},\) trong đó \(\frac{m}{n}\) là phân số tối giản, \(m,\ \ n\in {{N}^{*}}.\) Tính giá trị \({{m}^{2}}+{{n}^{2}}.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:237760
Phương pháp giải

Sử dụng công thức: \(\sqrt[m]{{{a}^{n}}}={{a}^{\frac{n}{m}}},\left( a>0 \right)\)

Giải chi tiết

\(\begin{array}{l}\sqrt {a.\sqrt[3]{{{a^2}.\sqrt[4]{{\frac{1}{a}}}}}} :\sqrt[{24}]{{{a^7}}} = \sqrt {a.\sqrt[3]{{{a^2}.\frac{1}{{{a^{\frac{1}{4}}}}}}}} :{a^{\frac{7}{{24}}}} = \sqrt {a.\sqrt[3]{{{a^{\frac{7}{4}}}}}} :{a^{\frac{7}{{24}}}}\\ = \sqrt {a.{{\left( {{a^{\frac{7}{4}}}} \right)}^{\frac{1}{3}}}} :{a^{\frac{7}{{24}}}} = \sqrt {a.{a^{\frac{7}{{12}}}}} :{a^{\frac{7}{{24}}}} = {\left( {{a^{\frac{{19}}{{12}}}}} \right)^{\frac{1}{2}}}:{a^{\frac{7}{{24}}}} = {a^{\frac{{19}}{{24}} - \frac{7}{{24}}}} = {a^{\frac{1}{2}}}\end{array}\)

Vậy m = 1 ; n = 2

Giá trị của \({{m}^{2}}+{{n}^{2}}={{1}^{2}}+{{2}^{2}}=5\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com