Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Tính \(I=\int\limits_{0}^{1}{\frac{dt}{{{t}^{2}}+t+1}}\)

Câu hỏi số 237917:
Thông hiểu

Tính \(I=\int\limits_{0}^{1}{\frac{dt}{{{t}^{2}}+t+1}}\)

Đáp án đúng là: B

Câu hỏi:237917
Phương pháp giải

\({{t}^{2}}+t+1={{\left( t+\frac{1}{2} \right)}^{2}}+\frac{3}{4}\) , đặt \(t+\frac{1}{2}=\frac{\sqrt{3}}{2}\tan x\)

Giải chi tiết

\(I=\int\limits_{0}^{1}{\frac{dt}{{{t}^{2}}+t+1}}=\int\limits_{0}^{1}{\frac{dt}{{{\left( t+\frac{1}{2} \right)}^{2}}+\frac{3}{4}}}\)

Đặt \(x+\frac{1}{2}=\frac{\sqrt{3}}{2}\tan x\Leftrightarrow dt=\frac{\sqrt{3}}{2}\left( 1+{{\tan }^{2}}x \right)dx\)

Đổi cận \(\left\{ \begin{array}{l}t = 0 \Rightarrow x = \frac{\pi }{6}\\t = 1 \Rightarrow x = \frac{\pi }{3}\end{array} \right.\), khi đó ta có \(I=\int\limits_{\frac{\pi }{6}}^{\frac{\pi }{3}}{\frac{\frac{\sqrt{3}}{2}\left( 1+{{\tan }^{2}}x \right)dx}{\frac{3}{4}\left( 1+{{\tan }^{2}}x \right)}}=\left. \frac{2}{\sqrt{3}}t \right|_{\frac{\pi }{6}}^{\frac{\pi }{3}}=\frac{2}{\sqrt{3}}\frac{\pi }{6}=\frac{\pi \sqrt{3}}{9}\)

Tham Gia Group Dành Cho 2K7 luyện thi Tn THPT - ĐGNL - ĐGTD

>> Lộ Trình Sun 2025 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi TN THPT & ĐGNL; ĐGTD) tại Tuyensinh247.com. Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, 3 bước chi tiết: Nền tảng lớp 12; Luyện thi chuyên sâu; Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com