Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Cho hàm số \(f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) và thỏa mãn đồng thời

Câu hỏi số 239554:
Vận dụng cao

Cho hàm số \(f\left( x \right)\) xác định và liên tục trên \(\mathbb{R}\) và thỏa mãn đồng thời các điều kiện sau

\(f\left( x \right)>0;\,\,\,{f}'\left( x \right)=\frac{x.f\left( x \right)}{\sqrt{{{x}^{2}}+1}};\,\,\forall x\in \mathbb{R}\) và \(f\left( 0 \right)=e.\) Giá trị của \(f\left( \sqrt{3} \right)\) bằng

Đáp án đúng là: B

Quảng cáo

Câu hỏi:239554
Phương pháp giải

Chia biểu thức, lấy nguyên hàm hai vế để tìm được hàm số \(f\left( x \right)\)

Giải chi tiết

Lời giải:

Ta có \({f}'\left( x \right)=\frac{x.f\left( x \right)}{\sqrt{{{x}^{2}}+1}}\Leftrightarrow \frac{{f}'\left( x \right)}{f\left( x \right)}=\frac{x}{\sqrt{{{x}^{2}}+1}}\Leftrightarrow \int{\frac{{f}'\left( x \right)}{f\left( x \right)}\text{d}x}=\int{\frac{x}{\sqrt{{{x}^{2}}+1}}\text{d}x}\)

\(\Leftrightarrow \int{\frac{\text{d}\left( f\left( x \right) \right)}{f\left( x \right)}}=\int{\frac{\text{d}\left( {{x}^{2}}+1 \right)}{2\sqrt{{{x}^{2}}+1}}}=\sqrt{{{x}^{2}}+1}+C\Leftrightarrow \ln f\left( x \right)=\sqrt{{{x}^{2}}+1}+C\Leftrightarrow f\left( x \right)={{e}^{\sqrt{{{x}^{2}}\,+\,1}\,+\,\,C}}\)

Mà \(f\left( 0 \right)=e\) \(\xrightarrow{{}}\) \({{e}^{C\,+\,1}}=e\Rightarrow C=0.\) Vậy \(f\left( \sqrt{3} \right)={{e}^{2}}.\)

Chọn B

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com