Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Hàm số \(y=x\sqrt{{{x}^{2}}+1}\) có đạo hàm cấp hai bằng:

Câu hỏi số 239572:
Thông hiểu

Hàm số \(y=x\sqrt{{{x}^{2}}+1}\) có đạo hàm cấp hai bằng:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:239572
Phương pháp giải

Sử dụng các quy tắc tính đạo hàm của 1 tích, đạo hàm của 1 thương. Lưu ý các hàm số hợp.

Giải chi tiết

\(\begin{align}y'=\sqrt{{{x}^{2}}+1}+x.\frac{2x}{2\sqrt{{{x}^{2}}+1}}=\frac{{{x}^{2}}+1+{{x}^{2}}}{\sqrt{{{x}^{2}}+1}}=\frac{2{{x}^{2}}+1}{\sqrt{{{x}^{2}}+1}} \\   y''=\frac{4x\sqrt{{{x}^{2}}+1}-\left( 2{{x}^{2}}+1 \right).\frac{2x}{2\sqrt{{{x}^{2}}+1}}}{{{x}^{2}}+1}=\frac{\frac{4x\left( {{x}^{2}}+1 \right)-x\left( 2{{x}^{2}}+1 \right)}{\sqrt{{{x}^{2}}+1}}}{{{x}^{2}}+1}=\frac{4{{x}^{3}}+4x-2{{x}^{3}}-x}{\left( {{x}^{2}}+1 \right)\sqrt{{{x}^{2}}+1}}=\frac{2{{x}^{3}}+3x}{\left( {{x}^{2}}+1 \right)\sqrt{{{x}^{2}}+1}} \\ \end{align}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com