Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Điểm thuộc đường thẳng \(d:x-y-1=0\) cách đều hai điểm cực trị của đồ thị hàm số

Câu hỏi số 240001:
Thông hiểu

Điểm thuộc đường thẳng \(d:x-y-1=0\) cách đều hai điểm cực trị của đồ thị hàm số \(y={{x}^{3}}-3{{x}^{2}}+2\) là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:240001
Phương pháp giải

+) Xác định tọa độ hai điểm cực trị của đồ thị hàm số, tham số hóa điểm và sử dụng điều kiện cách đều.

+) Cho hai điểm \(A\left( {{x}_{1}};\ {{y}_{1}} \right),\ \ B\left( {{x}_{2}};{{y}_{2}} \right)\Rightarrow AB=\sqrt{{{\left( {{x}_{2}}-{{x}_{1}} \right)}^{2}}+{{\left( {{y}_{2}}-{{y}_{1}} \right)}^{2}}}.\)

Giải chi tiết

Ta có \(y={{x}^{3}}-3{{x}^{2}}+2\,\,\xrightarrow{{}}\,\,{y}'=3{{x}^{2}}-6x;\,\,{y}'=0\Leftrightarrow \left[\begin{align}  x=0\,\,\Rightarrow \,\,y\left( 0 \right)=2 \\  x=2\,\,\Rightarrow \,\,y\left( 2 \right)=-\,2 \\ \end{align} \right..\)

Suy ra tọa độ hai điểm cực trị của đồ thị hàm số là \(A\left( 0;2 \right),\,\,B\left( 2;-\,2 \right).\)

Gọi \(M\in d\Rightarrow M\left( a;a-1 \right),\) khi đó \(\left\{ \begin{align}  MA=\sqrt{{{a}^{2}}+{{\left( a-3 \right)}^{2}}} \\  MB=\sqrt{{{\left( a-2 \right)}^{2}}+{{\left( a+1 \right)}^{2}}} \\ \end{align} \right.\) mà \(M\) cách đều \(A,\,\,B\)

Suy ra \(M{{A}^{2}}=M{{B}^{2}}\)\(\Leftrightarrow \)\({{a}^{2}}+{{\left( a-3 \right)}^{2}}={{\left( a-2 \right)}^{2}}+{{\left( a+1 \right)}^{2}}\)\(\Leftrightarrow \)\(a=1\,\,\Rightarrow \,\,M\left( 1;0 \right).\)

Chọn C

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com