Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = {x^2} - 4x + 3\). Nếu tiếp tuyến của đồ thị hàm số tại điểm M song song với

Câu hỏi số 242078:
Vận dụng

Cho hàm số \(y = {x^2} - 4x + 3\). Nếu tiếp tuyến của đồ thị hàm số tại điểm M song song với đường thẳng \( - 8x + y - 2017 = 0\) thì hoành độ \({x_0}\) của điểm M là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:242078
Phương pháp giải

Tiếp tuyến của đồ thị hàm số song song với đường thẳng \(y = ax + b\) ta giải phương trình \(y'\left( {{x_0}} \right) = a\)

Giải chi tiết

Ta có: \(y' = 2x - 4\)

Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm M có hoành độ \({x_0}\) là: \(y'\left( {{x_0}} \right) = 2{x_0} - 4\)

Vì tiếp tuyến song song với đường thẳng \( - 8x + y - 2017 = 0 \Leftrightarrow y = 8x + 2017\)

\( \Rightarrow y'\left( {{x_0}} \right) = 8 \Leftrightarrow 2{x_0} - 4 = 8 \Leftrightarrow {x_0} = 6\)

Chú ý khi giải

Ta phải đưa đường thẳng về đúng dạng \(y = ax + b\), tránh sai lầm nhiều bạn đi giải phương trình \(y'\left( {{x_0}} \right) =  - 8\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com