Cho hàm số \(y=\frac{2x}{x+2},\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x}_{0}};{{y}_{0}}
Cho hàm số \(y=\frac{2x}{x+2},\) có đồ thị \(\left( C \right)\) và điểm \(M\left( {{x}_{0}};{{y}_{0}} \right)\in \left( C \right),\) với \({{x}_{0}}\ne 0.\) Biết khoảng cách từ điểm \(I\left( -\,2;2 \right)\) đến tiếp tuyến của \(\left( C \right)\) tại \(M\) là lớn nhất, mệnh đề nào sau đây đúng ?
Đáp án đúng là: A
Quảng cáo
Viết phương trình tiếp tuyến của đồ thị tại điểm thuộc đồ thị hàm số, xác định khoảng cách d thông qua khoảng cách từ điểm đến đường thẳng và dùng phương pháp tìm GTLN của hàm số để tìm GTLN của khoảng cách từ I đến tiếp tuyến của đồ thị hàm số tại M.
Đáp án cần chọn là: A
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












