Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho \(\cot x = {-3 \over 4}\) và góc \(x\) thỏa mãn \({90^0} < x < {180^0}\). Khi đó:

Câu hỏi số 243965:
Thông hiểu

Cho \(\cot x = {-3 \over 4}\) và góc \(x\) thỏa mãn \({90^0} < x < {180^0}\). Khi đó:

Đáp án đúng là: C

Quảng cáo

Câu hỏi:243965
Phương pháp giải

Sử dụng công thức \(\tan x = {1 \over {\cot x}}\) để tìm \(\tan x\)

Sử dụng công thức \({1 \over {{{\sin }^2}x}} = {\cot ^2}x + 1\) để tìm \(\sin x\), sử dụng giả thiết \({90^0} < x < {180^0}\) để suy ra dấu của \(\sin x\).

Sử dụng công thức \({\sin ^2}x + {\cos ^2}x = 1\) để tìm \(\cos x\), sử dụng giả thiết \({90^0} < x < {180^0}\) để suy ra dấu của \(\cos x\).

Giải chi tiết

\(\cot x = {-3 \over 4} \Leftrightarrow \tan \,x = {-4 \over 3}\): phương án A sai

\(1 + {\cot ^2}x = {1 \over {{{\sin }^2}x}} \Leftrightarrow 1 + {\left( {{3 \over 4}} \right)^2} = {1 \over {{{\sin }^2}x}} \Leftrightarrow {\sin ^2}x = {{16} \over {25}} \Leftrightarrow \sin \,x =  \pm {4 \over 5}\). Mà \({90^0} < x < {180^0} \Rightarrow \sin \,x = {4 \over 5}\): Chọn C.

Vì \({\sin ^2}x = {{16} \over {25}} \Rightarrow {\cos ^2}x = {9 \over {25}} \Leftrightarrow \cos x =  \pm {3 \over 5}\) Mà \({90^0} < x < {180^0} \Rightarrow \cos x =  - {3 \over 5}\): phương án B sai.

Đáp án cần chọn là: C

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com