Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Cho hàm số \(y={{x}^{3}}-2\left( m+1 \right){{x}^{2}}+\left( 5m+1 \right)x-2m-2\) có đồ thị là \(\left(

Câu hỏi số 249115:
Vận dụng

 Cho hàm số \(y={{x}^{3}}-2\left( m+1 \right){{x}^{2}}+\left( 5m+1 \right)x-2m-2\) có đồ thị là \(\left( {{C}_{m}} \right)\), với m là tham số. Có bao nhiêu giá trị của m nguyên trong đoạn \(\left[ -10;100 \right]\) để \(\left( {{C}_{m}} \right)\) cắt trục hoành tại ba điểm phân biệt \(A\left( 2;0 \right),B,C\) sao cho trong hai điểm \(B,C\) có một điểm nằm trong và một điểm nằm ngoài đường tròn có phương trình \({{x}^{2}}+{{y}^{2}}=1\) ?

Đáp án đúng là: B

Quảng cáo

Câu hỏi:249115
Phương pháp giải

Tìm điều kiện để phương trình hoành độ giao điểm có ba nghiệm phân biệt thỏa mãn \({{x}_{A}}=2\), hoặc \({{x}_{B}}<-1<{{x}_{C}}<1\) hoặc \(-1<{{x}_{B}}<1<{{x}_{C}}\)

Giải chi tiết

Đồ thị hàm số \(y={{x}^{3}}-2\left( m+1 \right){{x}^{2}}+\left( 5m+1 \right)x-2m-2\) luôn đi qua điểm \(A\left( 2;0 \right)\)

Xét phương trình hoành độ giao điểm

\(\begin{array}{l}
\,\,\,\,{x^3} - 2\left( {m + 1} \right){x^2} + \left( {5m + 1} \right)x - 2m - 2 = 0\\
\Leftrightarrow \left( {x - 2} \right)\left( {{x^2} - 2mx + m + 1} \right) = 0\\
\Leftrightarrow \left[ \begin{array}{l}
x = 2\\
{x^2} - 2mx + m + 1 = 0\,\,\left( * \right)
\end{array} \right.
\end{array}\)

Để phương trinh có 3 nghiệm phân biệt \(\Leftrightarrow pt\,\left( * \right)\) có 2 nghiệm phân biệt khác 2 

\( \Leftrightarrow \left\{ \begin{array}{l}
\Delta ' = {m^2} - m - 1 > 0\\
{2^2} - 2m.2 + m + 1 \ne 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m \in \left( { - \infty ;\frac{{1 - \sqrt 5 }}{2}} \right) \cup \left( {\frac{{1 + \sqrt 5 }}{2}; + \infty } \right)\\
m \ne \frac{5}{3}
\end{array} \right.\)

Giả sử \({{x}_{B}};{{x}_{C}}\,\,\left( {{x}_{B}}<{{x}_{C}} \right)\) là 2 nghiệm phân biệt của phương trình (*).

Để hai điểm B, C một điểm nằm trong một điểm nằm ngoài đường tròn \({{x}^{2}}+{{y}^{2}}=1\)

TH1: \({x_B} < - 1 < {x_C} < 1 \Rightarrow \left\{ \begin{array}{l}
af\left( { - 1} \right) < 0\\
af\left( 1 \right) > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3m + 2 < 0\\
- m + 2 > 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m < \frac{{ - 2}}{3}\\
m < 2
\end{array} \right. \Leftrightarrow m < \frac{{ - 2}}{3}\)

TH2: \( - 1 < {x_B} < 1 < {x_C} \Leftrightarrow \left\{ \begin{array}{l}
af\left( { - 1} \right) > 0\\
af\left( 1 \right) < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
3m + 2 > 0\\
- m + 2 < 0
\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}
m > - \frac{2}{3}\\
m > 2
\end{array} \right. \Leftrightarrow m > 2\)

Kết hợp điều kiện ta có: \(m\in \left( -\infty ;-\frac{2}{3} \right)\cup \left( 2;+\infty  \right)\).

Lại có \(m\in \left[ -10;100 \right]\Rightarrow m\in \left[ -10;-\frac{2}{3} \right)\cup \left( 2;100 \right]\Rightarrow \) Có 108 giá trị m nguyên thỏa mãn yêu cầu bái toán.

 

Đáp án cần chọn là: B

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com