Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y=f\left( x \right).\) Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình bên. Hàm số

Câu hỏi số 250220:
Vận dụng

Cho hàm số \(y=f\left( x \right).\) Hàm số \(y={f}'\left( x \right)\) có đồ thị như hình bên. Hàm số \(y=f\left( x-{{x}^{2}} \right)\) nghịch biến trên khoảng

             

Đáp án đúng là: D

Quảng cáo

Câu hỏi:250220
Phương pháp giải

Tính đạo hàm của hàm hợp, xác định khoảng đồng biến, nghịch biến dựa vào đồ thị hàm số

Giải chi tiết

Ta có \(g\left( x \right)=f\left( x-{{x}^{2}} \right)\,\,\xrightarrow{{}}\,\,{g}'\left( x \right)=\left( 1-2x \right).{f}'\left( x-{{x}^{2}} \right);\,\,\forall x\in \mathbb{R}.\)

Xét \(g'\left( x \right) < 0 \Leftrightarrow \left( {1 - 2x} \right).f'\left( {x - {x^2}} \right) < 0 \Leftrightarrow\left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 2x > 0\\f'\left( {x - {x^2}} \right) < 0\end{array} \right.\\\left\{ \begin{array}{l}1 - 2x < 0\\f'\left( {x - {x^2}} \right) > 0\end{array} \right.\end{array} \right.\)

\( \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}1 - 2x > 0\\1 < x - {x^2} < 2\end{array} \right.\\\left\{ \begin{array}{l}1 - 2x < 0\\x - {x^2} \in \left( { - \,\infty ;1} \right) \cup \left( {2; + \,\infty } \right)\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \frac{1}{2}\\{x^2} - x + 1 < 0\\{x^2} - x + 2 > 0\end{array} \right.\\\left\{ \begin{array}{l}x > \frac{1}{2}\\\left[ \begin{array}{l}{x^2} - x + 1 > 0\\{x^2} - x + 2 < 0\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\left\{ \begin{array}{l}x < \frac{1}{2}\\VN\\VSN\end{array} \right.\\\left\{ \begin{array}{l}x > \frac{1}{2}\\\left[ \begin{array}{l}VSN\\VN\end{array} \right.\end{array} \right.\end{array} \right. \Leftrightarrow x > \frac{1}{2}.\)

Vậy hàm số \(y=g\left( x \right)\) nghịch biến trên khoảng \(\left( \frac{1}{2};+\,\infty  \right).\)

Chọn D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com