Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian Oxyz, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+4y-2z+5=0\). Phương trình mặt

Câu hỏi số 252578:
Vận dụng

Trong không gian Oxyz, cho mặt cầu \((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+4y-2z+5=0\). Phương trình mặt phẳng \((Q)\)chứa trục Ox và cắt \((S)\) theo giao tuyến là một đường tròn bán kính bằng 2 là

Đáp án đúng là: D

Quảng cáo

Câu hỏi:252578
Phương pháp giải

\({{d}^{2}}+{{r}^{2}}={{R}^{2}}\)

Trong đó,

\(d\): khoảng cách từ tâm O đến mặt phẳng (P),

\(r\): bán kính đường tròn là giao tuyến của mặt cầu (S) và mặt phẳng (P),

\(R\): bán kính hình cầu.

Giải chi tiết

\((S):{{x}^{2}}+{{y}^{2}}+{{z}^{2}}-6x+4y-2z+5=0\Leftrightarrow {{(x-3)}^{2}}+{{(y+2)}^{2}}+{{(z-1)}^{2}}=9\)

\(\Rightarrow \left( S \right)\) có tâm \(I(3;-2;1)\), bán kính \(R=3\).

\((Q)\) cắt \((S)\) theo giao tuyến là một đường tròn bán kính \(r=2\)

Ta có:  \({{d}^{2}}+{{r}^{2}}={{R}^{2}}\Leftrightarrow {{d}^{2}}+{{2}^{2}}={{3}^{2}}\Leftrightarrow d=\sqrt{5}\)

Gọi \(\overrightarrow{n}(a;b;c),\,\,\,\left( \overrightarrow{n}\ne \overrightarrow{0} \right)\) là một VTPT của (Q). Khi đó \(\overrightarrow{n}\) vuông góc với VTCP \(\overrightarrow{u}(1;0;0)\)của Ox  \(\Rightarrow 1.a+0.b+0.c=0\Leftrightarrow a=0\)

Phương trình mặt phẳng (Q) đi qua O(0;0;0) và có VTPT \(\overrightarrow{n}(0;b;c),\,\,\,\left( \overrightarrow{n}\ne \overrightarrow{0} \right)\) là:

\(0.(x-0)+b(y-0)+c(z-0)=0\Leftrightarrow by+cz=0\)

Khoảng cách từ tâm I đến (Q):

\(d=\frac{\left| b.(-2)+c.1 \right|}{\sqrt{{{b}^{2}}+{{c}^{2}}}}=\sqrt{5}\Rightarrow {{\left( 2b-c \right)}^{2}}=5({{b}^{2}}+{{c}^{2}})\Leftrightarrow {{b}^{2}}+4bc+4{{c}^{2}}=0\Leftrightarrow {{(b+2c)}^{2}}=0\Leftrightarrow b=-2c\)

Cho \(c=-1\Rightarrow b=2\Rightarrow \overrightarrow{n}(0;2;-1)\). Phương trình mặt phẳng (Q): \(2y-z=0\).

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com