Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho phương trình \({{x}^{2}}-\left( 2m+1 \right)x+{{m}^{2}}-1=0\) (m là tham số) 1. Giải phương trình với

Câu hỏi số 254873:
Vận dụng

Cho phương trình \({{x}^{2}}-\left( 2m+1 \right)x+{{m}^{2}}-1=0\) (m là tham số)

1. Giải phương trình với m = 5

2. Tìm các giá trị của m để phương trình có hai nghiệm \({{x}_{1}};{{x}_{2}}\) thỏa mãn:\(\left( x_{1}^{2}-2m{{x}_{1}}+{{m}^{2}} \right)\left( {{x}_{2}}+1 \right)=1\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:254873
Phương pháp giải

+) Thay giá trị đã cho của \(m\) vào phương trình đã cho để giải phương trình bậc hai ẩn \(x.\)

+) Phương trình đã cho có hai nghiệm phân biệt \(\Leftrightarrow \Delta >0.\)

+) Áp dụng hệ thức Vi-ét ta có: \(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=-\frac{b}{a} \\ & {{x}_{1}}{{x}_{2}}=\frac{c}{a} \\ \end{align} \right..\)

+) Biến đổi biểu thức đề bài cho và áp dụng hệ thức Vi-ét để tìm \(m.\)

Giải chi tiết

\({{x}^{2}}-\left( 2m+1 \right)x+{{m}^{2}}-1=0\) (m là tham số)

1. Khi m = 5 thì phương trình có dạng: \({{x}^{2}}-11x+24=0\Leftrightarrow \left( x-8 \right)\left( x-3 \right)=0\Leftrightarrow \left[ \begin{align} & x=8 \\ & x=3 \\ \end{align} \right.\)

Vậy khi m = 5 thì phương trình có nghiệm x = 8 hoặc x = 3

2.

Để phương trình có 2 nghiệm thì \(\Delta ={{\left( 2m+1 \right)}^{2}}-4\left( {{m}^{2}}-1 \right)=4{{m}^{2}}+4m+1-4{{m}^{2}}+4=4m+5\ge 0\Leftrightarrow m\ge -\frac{5}{4}\)

Theo định lí Vi-et ta có:\(\left\{ \begin{align} & {{x}_{1}}+{{x}_{2}}=2m+1 \\ & {{x}_{1}}{{x}_{2}}={{m}^{2}}-1 \\ \end{align} \right.\)

\(\begin{array}{l}
\,\,\,\,\,\left( {x_1^2 - 2m{x_1} + {m^2}} \right)\left( {{x_2} + 1} \right) \Leftrightarrow \left( {{x_1} + 1} \right)\left( {{x_2} + 1} \right) = 1 \Leftrightarrow {x_1}{x_2} + {x_1} + {x_2} + 1 = 1\\
\Leftrightarrow {m^2} - 1 + 2m + 1 = 0 \Leftrightarrow {m^2} + 2m = 0\\
\Leftrightarrow \left[ \begin{array}{l}
m = 0\;\;\;(ktm)\\
m = - 2\;\;\;(tm)
\end{array} \right..
\end{array}\)

Vậy \(m=-2.\)

Đáp án cần chọn là: A

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com