Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

 Trong không gian với hệ tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):3x+y+z-5=0\) và \(\left(

Câu hỏi số 255438:
Thông hiểu

 Trong không gian với hệ tọa độ \(Oxyz,\) cho hai mặt phẳng \(\left( P \right):3x+y+z-5=0\) và \(\left( Q \right):x+2y+z-4=0.\) Khi đó, giao tuyến của \(\left( P \right)\) và \(\left( Q \right)\) có phương trình là 

Đáp án đúng là: D

Quảng cáo

Câu hỏi:255438
Phương pháp giải

Ứng dụng tích có hướng để tìm vectơ chỉ phương của đường thẳng giao tuyến và giải hệ phương trình để tìm tọa độ giao điểm của hai mặt phẳng

Giải chi tiết

Ta có : \(\overrightarrow{{{n}_{\left( P \right)}}}=\left( 3;\ 1;\ 1 \right),\ \ \overrightarrow{{{n}_{\left( Q \right)}}}=\left( 1;\ 2;\ 1 \right).\)

Gọi \(d\) là giao tuyến của \(\left( P \right)\) và \(\left( Q \right).\)

Ta có \(\left\{ \begin{align} & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( P \right)}} \\ & {{{\vec{u}}}_{d}}\bot {{{\vec{n}}}_{\left( Q \right)}} \\ \end{align} \right.\Rightarrow \,\,{{\vec{u}}_{d}}=\left[ {{{\vec{n}}}_{\left( P \right)}};{{{\vec{n}}}_{\left( Q \right)}} \right]=\)\(\left( -\,1;-\,2;5 \right)\)

Xét hệ \(\left\{ \begin{align} & 3x+y+z-5=0 \\ & x+2y+z-4=0 \\ \end{align} \right.,\) chọn \(x = 0 \Rightarrow \,\,\left\{ \begin{array}{l}
y + z = 5\\
2y + z = 4
\end{array} \right. \Leftrightarrow \,\,\left\{ \begin{array}{l}
y = - \,1\\
z = 6
\end{array} \right. \Rightarrow M\left( {0; - 1;6} \right) \in d.\)

Vậy phương trình đường thẳng cần tìm là \(d:\left\{ \begin{align} & x=t \\ & y=-\,1+2t \\ & z=6-5t \\ \end{align} \right..\)


Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com