Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;4;5 \right);\,\,B\left( 3;4;0

Câu hỏi số 257687:
Vận dụng cao

Trong không gian với hệ tọa độ Oxyz, cho điểm \(A\left( 1;4;5 \right);\,\,B\left( 3;4;0 \right);\,\,C\left( 2;-1;0 \right)\) và mặt phẳng \(\left( P \right):\,\,3x-3y-2z-12=0\). Gọi \(M\left( a;b;c \right)\) thuộc (P) sao cho \(M{{A}^{2}}+M{{B}^{2}}+3M{{C}^{2}}\) đạt giá trị nhỏ nhất. Tính tổng \(a+b+c\).

Đáp án đúng là: A

Quảng cáo

Câu hỏi:257687
Phương pháp giải

+) Gọi \(I\) là điểm thỏa mãn hệ thức \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\), tìm tọa độ điểm I.

+) Chứng minh \(M{{A}^{2}}+M{{B}^{2}}+3M{{C}^{2}}\) nhỏ nhất \(\Leftrightarrow MI\) nhỏ nhất.

+) MI nhỏ nhất \(\Leftrightarrow M\) là hình chiếu của I trên (P).

Giải chi tiết

Gọi \(I\left( x;y;z \right)\) là điểm thỏa mãn \(\overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC}=\overrightarrow{0}\) ta có hệ phương trình:

\(\left\{ \begin{array}{l}x - 1 + x - 3 + 3\left( {x - 2} \right) = 0\\y - 4 + y - 4 + 3\left( {y + 1} \right) = 0\\z - 5 + z + 3z = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x = 2\\y = 1\\z = 1\end{array} \right. \Rightarrow I\left( {2;1;1} \right)\)

Ta có:

\(\begin{align}  P=M{{A}^{2}}+M{{B}^{2}}+3M{{C}^{2}}={{\left( \overrightarrow{MI}+\overrightarrow{IA} \right)}^{2}}+{{\left( \overrightarrow{MI}+\overrightarrow{IB} \right)}^{2}}+3{{\left( \overrightarrow{MI}+\overrightarrow{IC} \right)}^{2}} \\ P=M{{I}^{2}}+2\overrightarrow{MI}.\overrightarrow{IA}+I{{A}^{2}}+M{{I}^{2}}+2\overrightarrow{MI}.\overrightarrow{IB}+I{{B}^{2}}+3M{{I}^{2}}+6\overrightarrow{MI}.\overrightarrow{IC}+3I{{C}^{2}} \\ P=5M{{I}^{2}}+\underbrace{I{{A}^{2}}+I{{B}^{2}}+3I{{C}^{2}}}_{const}+2\overrightarrow{MI}\underbrace{\left( \overrightarrow{IA}+\overrightarrow{IB}+3\overrightarrow{IC} \right)}_{\overrightarrow{0}} \\  \Rightarrow {{P}_{\min }}\Leftrightarrow M{{I}_{\min }} \\ \end{align}\)

Khi đó M là hình chiếu của I trên (P).

Gọi d là đường thẳng đi qua I và vuông góc với (P) \(\Rightarrow d:\,\,\frac{x-2}{3}=\frac{y-1}{-3}=\frac{z-1}{-2}\Rightarrow M\left( 3t+2;-3t+1;-2t+1 \right)\).

\(M\in \left( P \right)\Rightarrow 3\left( 3t+2 \right)-3\left( -3t+1 \right)-2\left( -2t+1 \right)-12=0\Leftrightarrow t=\frac{1}{2}\Rightarrow M\left( \frac{7}{2};-\frac{1}{2};0 \right)\Rightarrow a+b+c=3\).

Chọn A.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com