Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong không gian với hệ tọa độ \(Oxyz,\) cho tam giác \(ABC\) có \(A\left( 2;3;3 \right)\), phương trình

Câu hỏi số 263812:
Vận dụng cao

Trong không gian với hệ tọa độ \(Oxyz,\) cho tam giác \(ABC\) có \(A\left( 2;3;3 \right)\), phương trình đường trung tuyến kẻ từ là \(\frac{x-3}{-1}=\frac{y-3}{2}=\frac{z-2}{-1}\), phương trình đường phân giác trong của góc \(C\) là \(\frac{{x - 2}}{2} = \frac{{y - 4}}{{ - 1}} = \frac{{z - 2}}{{ - 1}}.\) Biết rằng \(\overrightarrow{u}=\left( m;n;-1 \right)\) là một véc tơ chỉ phương của đường thẳng \(AB.\) Tính giá trị của biểu thức \(T={{m}^{2}}+{{n}^{2}}.\)

Đáp án đúng là: A

Quảng cáo

Câu hỏi:263812
Phương pháp giải

Dựa vào tính chất đường phân giác để tìm điểm đối xứng qua đường thẳng

Giải chi tiết

Kí hiệu 2 đường thẳng trung tuyến và phân giác lần lượt là \({{d}_{1}},\,\,{{d}_{2}}.\)

Gọi \(M\) là trung điểm của \(AC \Rightarrow \,\,M \in \left( {{d_1}} \right) \Rightarrow \,\,M\left( { - \,t + 3;2t + 3; - \,t + 2} \right)\)

Suy ra \(C\left( -\,2t+4;4t+3;-\,2t+1 \right)\) mà \(C\in \left( {{d}_{2}} \right)\,\,\xrightarrow{{}}\,\,t=0\Rightarrow \,\,C\left( 4;3;1 \right).\)

Phương trình mặt phẳng \(\left( P \right)\) qua \(A,\) vuông góc với \({{d}_{2}}\) là \(2x-y-z+2=0.\)

Gọi \(N\) là điểm đối xứng của \(A\) qua \(\left( {{d}_{2}} \right)\Rightarrow \,\,N\in BC\) và \(N\in \left( P \right).\)

Gọi \(E\) là trung điểm của \(AN\Rightarrow \,\,\)\(E\) là giao điểm của \({{d}_{2}}\) và \(\left( P \right)\)\(\Rightarrow \,\,E\left( 2;4;2 \right).\)

Suy ra \(N\left( 2;5;1 \right)\)\(\Rightarrow \,\,AC=NC\Rightarrow \,\,N\) trùng \(B.\) Vậy  \(\left\{ \begin{array}{l}A\left( {2;3;3} \right)\\B\left( {2;4;2} \right)\end{array} \right. \Rightarrow \overrightarrow {AB}  = \left( {0;1; - 1} \right).\)

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com