Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho đường tròn tâm O, đường kính AB = 2R. Trên đường tròn (O) lấy điểm C bất kì (C không

Câu hỏi số 266450:
Vận dụng

Cho đường tròn tâm O, đường kính AB = 2R. Trên đường tròn (O) lấy điểm C bất kì (C không trùng với A và B). Tiếp tuyến của đường tròn (O) tại A cắt tia BC ở điểm D. Gọi H là hình chiếu của A trên đường thẳng DO. Tia AH cắt đường tròn (O) tại điểm F (không trùng với A). Chứng minh

a) \(D{A^2} = DC.DB\)

b) Tứ giác AHCD nội tiếp.

c) \(CH \bot CF\)

d) \(\frac{{BH.BC}}{{BF}} = 2R\)

Quảng cáo

Câu hỏi:266450
Phương pháp giải

a) Sử dụng hệ thức lượng trong tam giác vuông.

b) Chứng minh tứ giác AHCD có tổng hai góc đối bằng 1800.

c) Chứng minh tam giác CFH đồng dạng với tam giác CAD.

d) Chứng minh tam giác BFH đồng dạng với tam giác BCA.

Giải chi tiết

 

 

a) \(D{A^2} = DC.DB\)

Ta có \(\widehat {ACB} = {90^0}\) (góc nội tiếp chắn nửa đường tròn tâm O) \( \Rightarrow AC \bot BC\,\,hay\,\,\,AC \bot BD\).

Ta có:\(\widehat {DAB} = {90^0}\) ( Do DA là tiếp tuyến của đường tròn tâm O tại A).

Áp dụng hệ thức lượng trong tam giác vuông ABD vuông tại A có đường cao AC ta có \(D{A^2} = DC.DB\).

b) Tứ giác AHCD nội tiếp.

Xét tứ giác AHCD có \(\widehat {AHD} = \widehat {ACD} = {90^0} \Rightarrow \) Hai đỉnh C và H kề nhau cùng nhìn cạnh AD dưới góc 900

\( \Rightarrow \) Tứ giác AHCD nội tiếp (Tứ giác có hai đỉnh kề nhau cùng nhìn 1 cạnh dưới các góc bằng nhau).

c) \(CH \bot CF\)

Do tứ giác AHCD nội tiếp nên \(\widehat {FHC} = \widehat {ADC}\) (cùng bù với \(\widehat {AHC}\)).

Xét tam giác FHC và tam giác ADC có:

\(\widehat {CFH} = \widehat {DAC}\) (góc nội tiếp và góc tạo bởi tia tiếp tuyến và dây cung cùng chắn cung AC).

\(\widehat {FHC} = \widehat {ADC}\,\,\left( {cmt} \right)\);

\(\Rightarrow \Delta FHC\backsim \Delta ADC\,\,\left( g.g \right)\Rightarrow \widehat{FCH}=\widehat{ACD}\) (hai góc tương ứng)

Mà \(\widehat {ACD} = {90^0} \Rightarrow \widehat {FCH} = {90^0} \Rightarrow CH \bot CF\)

d) \(\frac{{BH.BC}}{{BF}} = 2R\)

Xét tam giác vuông OAD vuông tại A có OH là đường cao ta  có \(O{A^2} = OD.OH\) (hệ thức lượng trong tam giác vuông)

Mà \(OA = OB = R \Rightarrow O{B^2} = OD.OH \Rightarrow \frac{{OB}}{{OH}} = \frac{{OD}}{{OB}}\).

Xét tam giác OBH và ODB có:

\(\widehat {BOD}\) chung;

\(\frac{{OB}}{{OH}} = \frac{{OD}}{{OB}}\,\,\left( {cmt} \right)\);

\(\Rightarrow \Delta OBH\backsim \Delta ODB\,\,\left( c.g.c \right)\Rightarrow \widehat{OBH}=\widehat{ODB}\)

Mà \(\widehat {ODB} = \widehat {CAF}\) (hai góc nội tiếp cùng chắn cung CH của đường tròn ngoại tiếp tứ giác AHCD).

\(\widehat {CAF} = \widehat {CBF}\) (hai góc nội tiếp cùng chắn cung CF của đường tròn (O))

\( \Rightarrow \widehat {OBH} = \widehat {CBF} \Rightarrow \widehat {OBH} + \widehat {HBC} = \widehat {CBF} + \widehat {HBC} \Rightarrow \widehat {OBC} = \widehat {HBF} = \widehat {ABC}\)

Xét tam giác BHF và tam giác BAC có:

\(\widehat {BFH} = \widehat {BCA} = {90^0}\) (góc BFC nội tiếp chắn nửa đường tròn (O));

\(\widehat {HBF} = \widehat {ABC}\,\,\left( {cmt} \right)\);

\(\Rightarrow \Delta BFH\backsim \Delta BCA\,\,\left( g.g \right)\Rightarrow \frac{BF}{BC}=\frac{BH}{BA}\Rightarrow \frac{BH.BC}{BF}=BA=2R\).

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com