Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\) b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\)

Câu hỏi số 266551:
Vận dụng

a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

Đáp án đúng là: C

Quảng cáo

Câu hỏi:266551
Phương pháp giải

+) Đặt \({x^2} = t\;\;\left( {t \ge 0} \right)\), đưa phương trình về dạng phương trình bậc hai ẩn \(t\) từ đó tìm ẩn \(x.\)

+) Đường thẳng có hệ số góc bằng \( - 3\) từ đó ta tìm được \(m.\) Đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\), ta thay tọa độ điểm A vào công thức hàm số của đường thẳng \(d\)  để tìm \(n.\)

Giải chi tiết

a) Giải phương trình \({x^4} + 3{x^2} - 4 = 0.\)

Đặt \({x^2} = t\;\;\left( {t \ge 0} \right).\) Khi đó ta có phương trình:

\({t^2} + 3t - 4 = 0.\;\;\left( * \right)\)

Có \(a = 1,\;b = 3,\;\;c =  - 4 \Rightarrow a + b + c = 1 + 3 - 4 = 0.\)

\( \Rightarrow \) phương trình  (*) có hai nghiệm phân biệt: \(\left[ \begin{array}{l}{t_1} = 1\;\;\left( {tm} \right)\\{t_2} =  - 4\;\;\left( {ktm} \right)\end{array} \right. \Rightarrow {x^2} = 1 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x =  - 1\end{array} \right..\)

Vậy phương trình đã cho có hai nghiệm phân biệt \(x =  - 1\) và \(x = 1.\)

b) Cho đường thẳng \(d:\;y = \left( {m - 1} \right)x + n.\) Tìm các giá trị của \(m\) và \(n\) để đường thẳng \(d\) đi qua điểm \(A\left( {1;\; - 1} \right)\) và có hệ số góc bằng \( - 3.\)

Đường thẳng \(d\) có hệ số góc bằng \( - 3 \Rightarrow m - 1 =  - 3 \Leftrightarrow m =  - 2.\)

\( \Rightarrow d:\;\;y =  - 3x + n.\)

Đường thẳng \(d\) đi qua \(A\left( {1; - 1} \right)\) nên ta có: \( - 1 =  - 3.1 + n \Leftrightarrow n = 2.\)

Vậy \(m =  - 2\) và \(n = 2\) thỏa mãn bài toán.

Đáp án cần chọn là: C

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com