Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc ĐGTD Bách Khoa và TN THPT - Ngày 10-11/01/2026
↪ ĐGTD Bách Khoa (TSA) - Trạm 5 ↪ TN THPT - Trạm 2
Giỏ hàng của tôi

Cho phương trình \(4{x^2} - 2\left( {m + 1} \right)x + {m^2} = 0\,\) (m là tham số) a) Với giá trị nào

Câu hỏi số 267460:
Vận dụng

Cho phương trình \(4{x^2} - 2\left( {m + 1} \right)x + {m^2} = 0\,\) (m là tham số)

a) Với giá trị nào của m thì phương trình có nghiệm kép?

b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:267460
Phương pháp giải

a) Phương trình có nghiệm kép \( \Leftrightarrow \Delta ' = 0\)

b) Tìm điều kiện để phương trình có nghiệm \(\Delta ' \ge 0\), sau đó áp dụng hệ thức Vi-et \(\left\{ \begin{array}{l}{x_1} + {x_2} =  - \frac{b}{a}\\{x_1}{x_2} = \frac{c}{a}\end{array} \right.\)

Giải chi tiết

 

a) Với giá trị nào của m thì phương trình có nghiệm kép?

Ta có \(\Delta ' = {\left( {m + 1} \right)^2} - 4{m^2} =  - 3{m^2} + 2m + 1\)

Để phương trình có nghiệm kép \( \Leftrightarrow \Delta ' = 0 \Leftrightarrow  - 3{m^2} + 2m + 1 = 0 \Leftrightarrow \left[ \begin{array}{l}m = 1\\m =  - \frac{1}{3}\end{array} \right.\)

b) Trong trường hợp phương trình có nghiệm, dùng hệ thức Vi-ét, hãy tính tổng các bình phương hai nghiệm của phương trình.

Để phương trình có nghiệm \( \Leftrightarrow \Delta ' \ge 0 \Leftrightarrow  - \frac{1}{3} \le x \le 1\).

Theo hệ thức Vi-et ta có \(\left\{ \begin{array}{l}{x_1} + {x_2} = \frac{{m + 1}}{2}\\{x_1}{x_2} = \frac{{{m^2}}}{4}\end{array} \right.\)

Khi đó tổng bình phương các nghiệm của phương trình là :

\(S = x_1^2 + x_2^2 = {\left( {{x_1} + {x_2}} \right)^2} - 2{x_1}{x_2} = \frac{{{{\left( {m + 1} \right)}^2}}}{4} - \frac{{2{m^2}}}{4} = \frac{{ - {m^2} + 2m + 1}}{4}\)

Trong trường hợp phương trình có nghiệm kép thì \(m = 1\) hoặc \(m =  - \frac{1}{3}\), khi đó ta có \(S = \frac{1}{2}\) hoặc \(S = \frac{1}{{18}}\).

Đáp án cần chọn là: D

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com