Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {\cos ^3}x + 9\cos x + 6{\sin ^2}x -

Câu hỏi số 268517:
Thông hiểu

Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {\cos ^3}x + 9\cos x + 6{\sin ^2}x - 1\) là 

Đáp án đúng là: A

Quảng cáo

Câu hỏi:268517
Phương pháp giải

Đặt \(\cos x = t,\,\,t \in \left[ { - 1;1} \right]\), khảo sát tìm GTLN, GTNN của hàm số \(f(t) = {t^3} + 9t + 6(1 - {t^2}) - 1 = {t^3} - 6{t^2} + 9t + 5\) trên đoạn \(\left[ { - 1;1} \right]\).

Giải chi tiết

Đặt \(\cos x = t,\,\,t \in \left[ { - 1;1} \right]\), hàm số  trở thành\(f(t) = {t^3} + 9t + 6(1 - {t^2}) - 1 = {t^3} - 6{t^2} + 9t + 5\)

\(f'(t) = 3{t^2} - 12t + 9,\,\,f'(t) = 0 \Leftrightarrow \left[ \begin{array}{l}t = 1\\t = 3\,\,(L)\end{array} \right.\)

Bảng biến thiên:

\( \Rightarrow \mathop {Max}\limits_{\left[ {1;1} \right]} f(t) = 9,\,\,\mathop {Min}\limits_{\left[ {1;1} \right]} f(t) =  - 11 \Rightarrow \)Tổng của GTLN và GTNN của hàm số \(y = {\cos ^3}x + 9\cos x + 6{\sin ^2}x - 1\) là -2.

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com