Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

 Cho đa giác đều 60 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3

Câu hỏi số 269643:
Vận dụng cao

 Cho đa giác đều 60 đỉnh nội tiếp một đường tròn. Số tam giác tù được tạo thành từ 3 trong 60 đinh của đa giác là:

Đáp án đúng là: D

Quảng cáo

Câu hỏi:269643
Giải chi tiết

Xét đa giác đều 60 đỉnh nội tiếp đường tròn tâm O (như hình vẽ).

Mỗi cạnh của đa giác này chắn một cung (nhỏ) có số đo \(\frac{{{360}^{0}}}{60}={{6}^{0}}\)

\(\Rightarrow \) Mỗi tam giác có 3 đỉnh chọn ngẫu nhiên từ 60 đỉnh của đa giác đều này thì độ lớn các góc của tam giác đều là bội của \({{3}^{0}}\).

Gọi A là biến cố tam giác thu được là tam giác tù. Ta tính \(n(A)\,\,?\)

- Chọn đỉnh tù có: 60 cách chọn.

- Chọn 2 đỉnh còn lại:

1) Nếu góc tù bằng \({{180}^{0}}-{{2.3}^{0}}\), tức là tổng hai góc nhọn là \({{2.3}^{0}}\) thì có: \(1\) cách chọn.

2) Nếu góc tù bằng \({{180}^{0}}-{{3.3}^{0}}\), tức là tổng hai góc nhọn là \({{3.3}^{0}}\) thì có: 2 cách chọn.

3) Nếu góc tù bằng \({{180}^{0}}-{{4.3}^{0}}\), tức là tổng hai góc nhọn là \({{4.3}^{0}}\) thì có: 3 cách chọn.

28) Nếu góc tù bằng \({{180}^{0}}-{{29.3}^{0}}\), tức là tổng hai góc nhọn là \({{29.3}^{0}}\) thì có: 28 cách chọn.

\(\Rightarrow n(A)=60.\left( 1+2+3+...+28 \right)=60.\frac{28\left( 1+28 \right)}{2}=24360\)

Vậy số tam giác tù được lập thành là 24360 tam giác.

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com