Cho phương trình \({5^x} + m = {\log _5}\left( {x - m} \right)\) với m là tham số. Có bao nhiêu giá trị
Cho phương trình \({5^x} + m = {\log _5}\left( {x - m} \right)\) với m là tham số. Có bao nhiêu giá trị nguyên của \(m \in \left( { - 20;20} \right)\) để phương trình đã cho có nghiệm ?
Đáp án đúng là: B
Quảng cáo
- Đặt \({\log _5}\left( {x - m} \right) = y \Rightarrow x = {5^y} + m\) đưa về hệ đối xứng loại II ẩn \(x,y\)
- Sử dụng phương pháp hàm số tìm điều kiện để phương trình có nghiệm.
Đáp án cần chọn là: B
>> 2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com













