Cho đường tròn (O) đường kính BC và H là 1 điểm nằm trên đoạn thẳng BO (điểm H không trùng
Cho đường tròn (O) đường kính BC và H là 1 điểm nằm trên đoạn thẳng BO (điểm H không trùng với hai điểm B và O). Qua H vẽ đường thẳng vuông góc với BC, cắt đường tròn (O) tại A và D. Gọi M là giao điểm của AC và BD, qua M vẽ đường thẳng vuông góc BC tại N.
a) Chứng minh rằng tứ giác MNBA nội tiếp.
b) Tính giá trị: \(P = 2{\left( {\dfrac{{BO}}{{AB}}} \right)^2} - \dfrac{{OH}}{{BH}}\)
c) Từ B vẽ tiếp tuyến với đường tròn (O), cắt hai đường thẳng AC và AN lần lượt tại K và E. Chứng minh rằng đường thẳng EC luôn đi qua trung điểm I của đoạn thẳng AH khi điểm H khi động trên đoạn thẳng BO.
Quảng cáo
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com











