Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \left( {m + 2} \right)x + 2{m^2} + 1\) (\(m\) là tham số) a) Vẽ đồ thị hàm số trên

Câu hỏi số 278661:
Vận dụng

Cho hàm số \(y = \left( {m + 2} \right)x + 2{m^2} + 1\) (\(m\) là tham số)

a) Vẽ đồ thị hàm số trên khi \(m =  - 1\). 

b) Tìm \(m\) để hai đường thẳng \(\left( d \right)y = \left( {m + 2} \right)x + 2{m^2} + 1\) và \(\left( {d'} \right):y = 3x + 3\) cắt nhau tại một điểm trên trục tung.

Đáp án đúng là: B

Quảng cáo

Câu hỏi:278661
Phương pháp giải

a) Thay \(m =  - 1\) vào hàm số, ta được một hàm số bậc nhất, đồ thị của hàm số bậc nhất là một đường thẳng, ta xác định hai điểm thuộc đồ thị hàm số, kẻ đường thẳng đi qua hai điểm đó thì ta được đồ thị hàm số cần vẽ.

  b) Xác định giao điểm của đồ thị hàm số \(\left( {d'} \right):y = 3x + 3\) với trục tung.

Vì theo đề bài\(\left( d \right)y = \left( {m + 2} \right)x + 2{m^2} + 1\)và \(\left( {d'} \right):y = 3x + 3\) cắt nhau tại một điểm trên trục tung nên giao điểm của \(\left( {d'} \right):y = 3x + 3\) với trục tung cũng nằm trên \(\left( d \right)y = \left( {m + 2} \right)x + 2{m^2} + 1\).

Thay tọa độ giao điểm vừa tìm được vào đường thẳng \(\left( d \right)y = \left( {m + 2} \right)x + 2{m^2} + 1\) để tìm \(m\).

Giải chi tiết

Cho hàm số \(y = \left( {m + 2} \right)x + 2{m^2} + 1\) (\(m\) là tham số)

a)      Vẽ đồ thị hàm số trên khi \(m =  - 1\).

Với \(m =  - 1\) ta có hàm số có dạng:\(y = x + 3\)

Chọn \(x = 0 \Rightarrow y = 3 \Rightarrow \)\(A\left( {0;3} \right)\) thuộc đồ thị hàm số

Chọn \(y = 0 \Rightarrow x + 3 = 0 \Leftrightarrow x =  - 3 \Rightarrow B\left( { - 3;\;0} \right)\) thuộc đồ thị hàm số.

Từ đó ta có đồ thị hàm số:

b) Tìm \(m\) để hai đường thẳng \(\left( d \right)y = \left( {m + 2} \right)x + 2{m^2} + 1\)\(\left( {d'} \right):y = 3x + 3\) cắt nhau tại một điểm trên trục tung.

Phương trình của trục tung có dạng \(x = 0\). Thay \(x = 0\) vào hàm số \(\left( {d'} \right):y = 3x + 3\) ta có \(y = 3\)

Suy ra \(A\left( {0;3} \right)\) là giao điểm của\(\left( {d'} \right):y = 3x + 3\) và trục tung.

Vì hai đường thẳng \(\left( d \right):y = \left( {m + 2} \right)x + 2{m^2} + 1\)và \(\left( {d'} \right):y = 3x + 3\) cắt nhau tại một điểm trên trục tung nên điểm \(A\left( {0;3} \right)\) thuộc đường thẳng  \(\left( d \right):y = \left( {m + 2} \right)x + 2{m^2} + 1\)

\( \Rightarrow 3 = \left( {m + 2} \right).0 + 2{m^2} + 1 \Leftrightarrow {m^2} = 1 \Leftrightarrow m =  \pm 1\).

Với \(m = 1 \Rightarrow y = 3x + 3 \Rightarrow \)\(\left( d \right)\) trùng với \(\left( {d'} \right):y = 3x + 3\) (loại vì nếu hai đường thẳng trùng nhau thì không thể cắt nhau tại 1 điểm)

Với \(m =  - 1 \Rightarrow y = x + 3\) (thỏa mãn)

Vậy\(m =  - 1\) là giá trị cần tìm.

Chọn đáp án B.

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com