Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn

Câu hỏi số 281368:
Thông hiểu

Tìm giá trị của tham số m để hàm số \(y = {x^3} + 3x + m\) có giá trị nhỏ nhất trên đoạn \(\left[ { - 1;1} \right]\) bằng 0.

Đáp án đúng là: A

Quảng cáo

Câu hỏi:281368
Phương pháp giải

Phương pháp tìm GTNN, GTLN của hàm số \(y = f\left( x \right)\) trên \(\left[ {a;b} \right]\):

+) Giải phương trình \(f'\left( x \right) = 0 \Rightarrow \) các nghiệm \({x_i} \in \left[ {a;b} \right]\).

+) Tính các giá trị \(f\left( {{x_i}} \right);\,\,\,f\left( a \right);\,\,f\left( b \right)\)

+) So sánh và kết luận.

Giải chi tiết

 

\(y = {x^3} + 3x + m \Rightarrow y' = 3{x^2} + 3 > 0,\,\,\forall x \Rightarrow \) Hàm số đồng biến trên R.

\( \Rightarrow \mathop {Min}\limits_{\left[ { - 1;1} \right]} y = y\left( { - 1} \right) =  - 4 + m = 0 \Rightarrow m = 4\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com