Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Biểu diễn nghiệm trên đường tròn lượng giác của phương trình \({\tan ^2}\left( {2x - \frac{\pi

Câu hỏi số 281989:
Vận dụng

Biểu diễn nghiệm trên đường tròn lượng giác của phương trình \({\tan ^2}\left( {2x - \frac{\pi }{2}} \right) - 3 = 0\) gồm mấy điểm?

Đáp án đúng là: C

Quảng cáo

Câu hỏi:281989
Phương pháp giải

Dùng hằng đẳng thức \({a^2} - {b^2} = (a - b)(a + b)\)để đưa phương trình ban đầu về phương trình tích.

Giải chi tiết

Điều kiện: \(\,\,\,\,\,\,\,\cos \left( {2x - \frac{\pi }{2}} \right) \ne 0 \Leftrightarrow 2x - \frac{\pi }{2} \ne \frac{\pi }{2} + k\pi  \Leftrightarrow x \ne \frac{{k\pi }}{2}\,\,(k \in \mathbb{Z}).\)

\(\begin{array}{l}\,\,\,\,\,\,\,{\tan ^2}\left( {2x - \frac{\pi }{2}} \right) - 3 = 0\\ \Leftrightarrow \left[ {\tan \left( {2x - \frac{\pi }{2}} \right) - \sqrt 3 } \right].\left[ {\tan \left( {2x - \frac{\pi }{2}} \right) + \sqrt 3 } \right] = 0\\ \Leftrightarrow \left[ \begin{array}{l}\tan \left( {2x - \frac{\pi }{2}} \right) + \sqrt 3  = 0\\\tan \left( {2x - \frac{\pi }{2}} \right) - \sqrt 3  = 0\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}\tan \left( {2x - \frac{\pi }{2}} \right) = \tan \frac{{ - \pi }}{3}\\\tan \left( {2x - \frac{\pi }{2}} \right) = \tan \frac{\pi }{3}\end{array} \right.\\ \Leftrightarrow \left[ \begin{array}{l}2x - \frac{\pi }{2} = \frac{{ - \pi }}{3} + m\pi \\2x - \frac{\pi }{2} = \frac{\pi }{3} + n\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{12}} + \frac{{m\pi }}{2}\\x = \frac{{5\pi }}{{12}} + \frac{{n\pi }}{2}\end{array} \right.\;\;\;\;(m,\;n \in \mathbb{Z})\end{array}\)

Biểu diễn tập nghiệm của phương trình trên đường tròn lượng giác ta có: \(x = \frac{\pi }{{12}} + \frac{{k\pi }}{2}\)cho 4 điểm, \(x = \frac{{5\pi }}{{12}} + \frac{{k\pi }}{2}\)cho 4 điểm.

Vậy biểu diễn nghiệm của phương trình trên gồm 8 điểm.

Đáp án cần chọn là: C

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com