Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho biểu thức  \(P = \left( {\frac{1}{{\sqrt x  - \sqrt {x - 1} }} - \frac{{x - 3}}{{\sqrt {x - 1}  - \sqrt 2

Câu hỏi số 281994:
Vận dụng

Cho biểu thức  \(P = \left( {\frac{1}{{\sqrt x  - \sqrt {x - 1} }} - \frac{{x - 3}}{{\sqrt {x - 1}  - \sqrt 2 }}} \right)\left( {\frac{2}{{\sqrt 2  - \sqrt x }} - \frac{{\sqrt x  + \sqrt 2 }}{{\sqrt {2x}  - x}}} \right)\). Tính giá trị của P với \(x = 3 + 2\sqrt 2 \).

Đáp án đúng là: B

Quảng cáo

Câu hỏi:281994
Phương pháp giải

+) Tìm điều kiện xác định của biểu thức.

+) Sử dụng biểu thức liên hợp.

+) Đặt nhân tử chung.

+) Rút gọn các phân thức trước khi tiến hành tính toán.

Giải chi tiết

 

Biểu thức P có nghĩa khi và chỉ khi : \(\left\{ \begin{array}{l}\sqrt x  > 0\\\sqrt {x - 1}  \ge 0\\\sqrt 2  - \sqrt x  \ne 0\\\sqrt {x - 1}  - \sqrt 2  \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x > 0\\x \ge 1\\x \ne 2\\x \ne 3\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge 1\\x \ne 2\\x \ne 3\end{array} \right.\)

ĐKXĐ: \(x \ge 1;x \ne 2;x \ne 3\)

  \(\begin{array}{l}P = \left( {\frac{1}{{\sqrt x  - \sqrt {x - 1} }} - \frac{{x - 3}}{{\sqrt {x - 1}  - \sqrt 2 }}} \right)\left( {\frac{2}{{\sqrt 2  - \sqrt x }} - \frac{{\sqrt x  + \sqrt 2 }}{{\sqrt {2x}  - x}}} \right)\\P = \left[ {\frac{{\left( {\sqrt x  + \sqrt {x - 1} } \right)}}{{\left( {\sqrt x  - \sqrt {x - 1} } \right)\left( {\sqrt x  + \sqrt {x - 1} } \right)}} - \frac{{\left( {x - 3} \right)\left( {\sqrt {x - 1}  + \sqrt 2 } \right)}}{{\left( {\sqrt {x - 1}  - \sqrt 2 } \right)\left( {\sqrt {x - 1}  + \sqrt 2 } \right)}}} \right]\left[ {\frac{2}{{\sqrt 2  - \sqrt x }} - \frac{{\sqrt x  + \sqrt 2 }}{{\sqrt x \left( {\sqrt 2  - \sqrt x } \right)}}} \right]\\P = \left[ {\frac{{\sqrt x  + \sqrt {x - 1} }}{{x - \left( {x - 1} \right)}} - \frac{{\left( {x - 3} \right)\left( {\sqrt {x - 1}  + \sqrt 2 } \right)}}{{\left( {x - 1} \right) - 2}}} \right].\frac{{2\sqrt x  - \sqrt x  - \sqrt 2 }}{{\sqrt x \left( {\sqrt 2  - \sqrt x } \right)}}\\P = \left( {\frac{{\sqrt x  + \sqrt {x - 1} }}{{x - x + 1}} - \frac{{\left( {x - 3} \right)\left( {\sqrt {x - 1}  + \sqrt 2 } \right)}}{{x - 3}}} \right).\frac{{ - \left( {\sqrt 2  - \sqrt x } \right)}}{{\sqrt x \left( {\sqrt 2  - \sqrt x } \right)}}\\P = \left( {\sqrt x  + \sqrt {x - 1}  - \sqrt {x - 1}  - \sqrt 2 } \right).\frac{{ - 1}}{{\sqrt x }} = \frac{{\left( {\sqrt x  - \sqrt 2 } \right).\left( { - 1} \right)}}{{\sqrt x }} = \frac{{\sqrt 2  - \sqrt x }}{{\sqrt x }}\end{array}\)

Ta có: \(x = 3 + 2\sqrt 2  = {\left( {\sqrt 2  + 1} \right)^2} \Rightarrow \sqrt x  = \sqrt {{{\left( {\sqrt 2  + 1} \right)}^2}}  = \left| {\sqrt 2  + 1} \right| = \sqrt 2  + 1\,\,\left( {Do\,\,\sqrt 2  + 1 > 0} \right)\)

Thay \(\sqrt x  = \sqrt 2  + 1\) vào biểu thức \(P = \frac{{\sqrt 2  - \sqrt x }}{{\sqrt x }}\), ta có: \(P = \frac{{\sqrt 2  - \sqrt 2  - 1}}{{\sqrt 2  + 1}} = \frac{{ - 1}}{{\sqrt 2  + 1}} =  - \sqrt 2  + 1\).

Vậy khi \(x = 3 + 2\sqrt 2 \) thì \(P =  - \sqrt 2  + 1\).

Đáp án cần chọn là: B

PH/HS 2K10 THAM GIA NHÓM ĐỂ CẬP NHẬT ĐIỂM THI, ĐIỂM CHUẨN MIỄN PHÍ!

>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com