Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm phương trình tương đường với phương trình \(\frac{{\left( {{x^2} + x - 6} \right)\sqrt {x + 1}

Câu hỏi số 283038:
Thông hiểu

Tìm phương trình tương đường với phương trình \(\frac{{\left( {{x^2} + x - 6} \right)\sqrt {x + 1} }}{{\left| x \right| - 2}} = 0\)  trong các phương trình sau:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:283038
Phương pháp giải

Hai phương trình được gọi là tương đương khi và chỉ khi chúng có cùng tập nghiệm.

Giải chi tiết

 

\(\frac{{\left( {{x^2} + x - 6} \right)\sqrt {x + 1} }}{{\left| x \right| - 2}} = 0\), ĐK: \(\left\{ \begin{array}{l}x + 1 \ge 0\\\left| x \right| - 2 \ne 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ne  \pm 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x \ge  - 1\\x \ne 2\end{array} \right.\)

\(\frac{{\left( {{x^2} + x - 6} \right)\sqrt {x + 1} }}{{\left| x \right| - 2}} = 0 \Leftrightarrow \left[ \begin{array}{l}{x^2} + x - 6 = 0\\x + 1 = 0\end{array} \right. \Leftrightarrow x =  - 1\)

Vậy tập nghiệm của phương trình là \(S = \left\{ { - 1} \right\}\).

\(\frac{{{x^2} + 4x + 3}}{{\sqrt {x + 3} }} = 0 \Leftrightarrow \left\{ \begin{array}{l}x + 3 > 0\\{x^2} + 4x + 3 = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}x >  - 3\\\left[ \begin{array}{l}x =  - 1\\x =  - 3\end{array} \right.\end{array} \right. \Leftrightarrow x =  - 1 \Rightarrow S = \left\{ { - 1} \right\}\)

Chọn đáp án A.

Đáp án cần chọn là: A

Tham Gia Group Dành Cho 2K9 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến Lớp 10 cùng thầy cô giáo giỏi tại Tuyensinh247.com, (Xem ngay) Cam kết giúp học sinh học tốt, bứt phá điểm 9,10 chỉ sau 3 tháng, làm quen kiến thức, định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 10

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com