Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C). Tiếp tuyến của (C) cắt hai tiệm cận

Câu hỏi số 284950:
Vận dụng

Cho hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có đồ thị (C). Tiếp tuyến của (C) cắt hai tiệm cận của (C) tại hai điểm A, B. Giá trị nhỏ nhất của AB là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:284950
Phương pháp giải

Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm. Viết phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\).

Xác định giao điểm của tiếp điểm với hai đường tiệm cận và tính độ dài AB. Sử dụng công thức tính độ dài : \(AB = \sqrt {{{\left( {{x_A} - {x_B}} \right)}^2} + {{\left( {{y_A} - {y_B}} \right)}^2}} \).

Sử dụng BĐT Cô-si tìm GTNN của AB.

Giải chi tiết

Đồ thị hàm số \(y = \frac{{2x + 1}}{{x + 1}}\) có TCĐ là \(x =  - 1\) và TCN là \(y = 2\)

Giả sử \(M\left( {{x_0};{y_0}} \right)\) là tiếp điểm \( \Rightarrow {y_0} = \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)

\(y' = \frac{1}{{{{\left( {x + 1} \right)}^2}}} \Rightarrow y'\left( {{x_0}} \right) = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}\)

Phương trình tiếp tuyến của (C) tại \(M\left( {{x_0};{y_0}} \right)\) là:

\(y = \frac{1}{{{{\left( {{x_0} + 1} \right)}^2}}}.\left( {x - {x_0}} \right) + \frac{{2{x_0} + 1}}{{{x_0} + 1}}\)

Cho \(x =  - 1 \Rightarrow y = \frac{{ - 1 - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} = \frac{{2{x_0}}}{{{x_0} + 1}} \Rightarrow A\left( { - 1;\frac{{2{x_0}}}{{{x_0} + 1}}} \right)\)

Cho \(y = 2 \Rightarrow 2 = \frac{{x - {x_0}}}{{{{\left( {{x_0} + 1} \right)}^2}}} + \frac{{2{x_0} + 1}}{{{x_0} + 1}} \Leftrightarrow x - {x_0} + \left( {2{x_0} + 1} \right)\left( {{x_0} + 1} \right) = 2{\left( {{x_0} + 1} \right)^2}\)

\( \Leftrightarrow x - {x_0} + 2x_0^2 + 3{x_0} + 1 = 2x_0^2 + 4{x_0} + 2 \Leftrightarrow x = 2{x_0} + 1\)\( \Rightarrow B\left( {2{x_0} + 1;2} \right)\)

Khi đó: \(AB = \sqrt {{{\left( {2{x_0} + 2} \right)}^2} + {{\left( {\frac{{2{x_0}}}{{{x_0} + 1}} - 2} \right)}^2}}  = \sqrt {4{{\left( {{x_0} + 1} \right)}^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}} \)

Áp dụng BĐT Cô-si ta có: \(4{\left( {{x_0} + 1} \right)^2} + \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \ge 2\sqrt {4{{\left( {{x_0} + 1} \right)}^2}.\frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}}}  = 8\)

\( \Rightarrow A{B_{\min }} = \sqrt 8  = 2\sqrt 2 \) khi \(4{\left( {{x_0} + 1} \right)^2} = \frac{4}{{{{\left( {{x_0} + 1} \right)}^2}}} \Leftrightarrow {\left( {{x_0} + 1} \right)^2} = 1 \Leftrightarrow \left[ \begin{array}{l}{x_0} = 0\\{x_0} =  - 2\end{array} \right.\).

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com