Hệ số của số hạng chứa \({x^5}\) trong khai triển \({\left( {{x^2} + \dfrac{1}{{{x^3}}}} \right)^n}\),
Hệ số của số hạng chứa \({x^5}\) trong khai triển \({\left( {{x^2} + \dfrac{1}{{{x^3}}}} \right)^n}\), biết n là số nguyên dương thỏa mãn \(C_n^1 + C_n^3 = 13n\).
Đáp án đúng là: A
Quảng cáo
Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \)
Công thức tổ hợp chập k của n phần tử: \(C_n^k = \dfrac{{n!}}{{k!\left( {n - k} \right)!}}\).
Đáp án cần chọn là: A
>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com












