Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang, đáy lớn BC với \(BC = 2a,\,\,AD = AB = a\), mặt bên

Câu hỏi số 286138:
Vận dụng cao

Cho hình chóp \(S.ABCD\) có \(ABCD\) là hình thang, đáy lớn BC với \(BC = 2a,\,\,AD = AB = a\), mặt bên \(\left( {SAD} \right)\)là tam giác đều. Lấy điểm \(M\) trên cạnh AB sao cho \(MB = 2AM\). Mặt phẳng \(\left( \alpha  \right)\) đi qua M và song song với SA, BC. Xác định thiết diện của hình chóp bị cắt bởi mặt phẳng \(\left( \alpha  \right)\) và tính diện tích của thiết diện đó.

Đáp án đúng là: D

Quảng cáo

Câu hỏi:286138
Giải chi tiết

* Dựng thiết diện:

Qua M kẻ MQ song song BC (\(Q \in DC\)), kẻ MN song song SA  (\(N \in SB\))

Qua N kẻ NP song song BC (\(P \in SC\))

Khi đó, \(\left( {MNPQ} \right)\) là mặt phẳng qua M và song song BC, SA

\( \Rightarrow \left( {MNPQ} \right) \equiv \left( \alpha  \right)\)

Thiết diện của hình chóp bị cắt bởi mặt phẳng \(\left( \alpha  \right)\) là tứ giác \(MNPQ\).

* Tính diện tích thiết diện:

Ta có: NP // MQ (cùng song song BC) \( \Rightarrow MNPQ\) là hình thang

\(\Delta SAD\) đều \( \Rightarrow SA = SD = AD = a\)

ABCD là hình thang, \(MQ//BC \Rightarrow \dfrac{{CQ}}{{DC}} = \dfrac{{BM}}{{AB}} = \dfrac{{BN}}{{SB}} = \dfrac{2}{3}\)

\(MN//SA \Rightarrow \dfrac{{MN}}{{SA}} = \dfrac{{BM}}{{AB}} = \dfrac{2}{3} \Rightarrow MN = \dfrac{2}{3}SA = \dfrac{2}{3}a\)

\(NP//BC \Rightarrow \dfrac{{NP}}{{BC}} = \dfrac{1}{3} \Rightarrow NP = \dfrac{1}{3}.BC = \dfrac{2}{3}a\) và \(\dfrac{{PC}}{{SC}} = \dfrac{{NB}}{{SB}} = \dfrac{2}{3} \Rightarrow \dfrac{{PC}}{{SC}} = \dfrac{{CQ}}{{DC}} = \dfrac{2}{3} \Rightarrow \dfrac{{PQ}}{{SD}} = \dfrac{2}{3} \Rightarrow PQ = \dfrac{2}{3}SD = \dfrac{2}{3}a\)

Gọi I, J lần lượt là trung điểm của BM, CQ.

Giả sử MQ có độ dài bằng x. Khi đó, do IJ là đường trung bình của hình thang BCQM \( \Rightarrow IJ = \dfrac{{MQ + BC}}{2} = \dfrac{{x + 2a}}{2}\)

Do MQ là  đường trung bình của hình thang IJDA \(\begin{array}{l} \Rightarrow 2MQ = IJ + AD \Leftrightarrow 2x = \dfrac{{x + 2a}}{2} + a \Leftrightarrow 4x = x + 2a + 2a \Leftrightarrow x = \dfrac{4}{3}a\\ \Rightarrow MQ = \dfrac{4}{3}a\end{array}\)

Xét hình thang MNPQ có: \(NP = MN = PQ = \dfrac{2}{3}a,\,\,MQ = \dfrac{4}{3}a\)\( \Rightarrow MNPQ\) là hình thang cân.

Kẻ MH, NK vuông góc PQ (H, K thuộc PQ)

\( \Rightarrow QH = PK = \dfrac{{PQ - MN}}{2} = \dfrac{{\dfrac{4}{3}a - \dfrac{2}{3}a}}{2} = \dfrac{a}{3}\)

 \( \Rightarrow MH = \sqrt {M{Q^2} - Q{H^2}}  = \sqrt {{{\left( {\dfrac{2}{3}a} \right)}^2} - {{\left( {\dfrac{1}{3}a} \right)}^2}}  = \sqrt {\dfrac{{{a^2}}}{3}}  = \dfrac{{a\sqrt 3 }}{3}\)

Diện tích hình thang MNPQ: \(S = \dfrac{1}{2}\left( {MN + PQ} \right).MH = \dfrac{1}{2}.\left( {\dfrac{2}{3}a + \dfrac{4}{3}a} \right).\dfrac{{a\sqrt 3 }}{3} = \dfrac{{{a^2}\sqrt 3 }}{3}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com