Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Tìm số hạng không chứa x trong khai triển của biểu thức \({\left( {2x - \frac{1}{{{x^2}}}}

Câu hỏi số 287984:
Vận dụng

Tìm số hạng không chứa x trong khai triển của biểu thức \({\left( {2x - \frac{1}{{{x^2}}}} \right)^{12}}\).

Đáp án đúng là: D

Quảng cáo

Câu hỏi:287984
Phương pháp giải

Sử dụng khai triển nhị thức Newton: \({\left( {a + b} \right)^n} = \sum\limits_{k = 0}^n {C_n^k{a^{n - k}}{b^k}} \)

Giải chi tiết

\({\left( {2x - \frac{1}{{{x^2}}}} \right)^{12}} = \sum\limits_{k = 0}^{12} {C_{12}^k{{\left( {2x} \right)}^{12 - k}}{{\left( { - \frac{1}{{{x^2}}}} \right)}^k}}  = \sum\limits_{k = 0}^{12} {C_{12}^k{2^{12 - k}}{x^{12 - k}}{{\left( { - 1} \right)}^k}{x^{ - 2k}}}  = \sum\limits_{k = 0}^{12} {C_{12}^k{2^{12 - k}}{{\left( { - 1} \right)}^k}{x^{12 - 3k}}} \)

Để tìm hệ số của số hạng không chứa x \( \Leftrightarrow 12 - 3k = 0 \Leftrightarrow k = 4\).

Vậy số hạng không chứa x là: \(C_{12}^4{2^8}\).

Đáp án cần chọn là: D

Group 2K9 ôn Thi ĐGNL & ĐGTD Miễn Phí

>> 2K9 Học trực tuyến - Định hướng luyện thi TN THPT, ĐGNL, ĐGTD ngay từ lớp 11 (Xem ngay) cùng thầy cô giáo giỏi trên Tuyensinh247.com. Bứt phá điểm 9,10 chỉ sau 3 tháng, tiếp cận sớm các kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com