Cho đường tròn \(\left( {O;R} \right)\). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp
Cho đường tròn \(\left( {O;R} \right)\). Từ một điểm M nằm ngoài đường tròn kẻ các tiếp tuyến ME, MF đến đường tròn (với E, F là các tiếp điểm).
1) Chứng minh các điểm M, E, O, F cùng thuộc một đường tròn.
2) Đoạn OM cắt đường tròn \(\left( {O;R} \right)\) tại I. Chứng minh I là tâm đường tròn nội tiếp tam giác MEF.
3) Kẻ đường kính ED của \(\left( {O;R} \right)\). Hạ FK vuông góc với ED. Gọi P là giao điểm của MD và FK. Chứng minh P là trung điểm của FK.
Quảng cáo
1) Chứng minh M, E, O, F cùng thuộc đường tròn đường kính MO
2) Chứng minh I là giao của 2 đường phân giác trong tam giác MEF dựa vào các góc phụ nhau
3) Kéo dài DF và EM cắt nhau tại G từ đó sử dụng định lý Ta-let để chứng minh \(PF = PK\)
>> Học trực tuyến lớp 9 và Lộ trình UP10 trên Tuyensinh247.com Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Lộ trình học tập 3 giai đoạn: Học nền tảng lớp 9, Ôn thi vào lớp 10, Luyện Đề. Bứt phá điểm lớp 9, thi vào lớp 10 kết quả cao. Hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Hỗ trợ - Hướng dẫn
-
024.7300.7989
-
1800.6947
(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com










