Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trên mặt phẳng nằm ngang có hai con lắc lò xo. Các lò co có cùng độ cứng k, cùng chiều dài tự

Câu hỏi số 289122:
Vận dụng cao

Trên mặt phẳng nằm ngang có hai con lắc lò xo. Các lò co có cùng độ cứng k, cùng chiều dài tự nhiên 32cm. Các vật nhỏ A và B có khối lượng lần lượt là m và 4m. Ban đầu, A và B được giữ ở vị trí sao cho lò xo gắn với A bị dãn 8cm còn lò xo gắn với B bị nén 8cm. Đồng thời thả nhẹ để hai vật dao động điều hoa trên cùng một đường thẳng đi qua giá I cố định (hình vẽ). Trong quá trình dao động, khoảng cách lớn nhất và nhỏ nhất giữa hai vật có giá trị lần lượt là

Đáp án đúng là: C

Quảng cáo

Câu hỏi:289122
Phương pháp giải

Sử dụng công thức tổng hợp hai dao động

Giải chi tiết

Ta có tần số góc của con lắc A và con lắc B là:

\(\begin{array}{l}
\omega {}_A = \sqrt {\frac{k}{m}} ;{\omega _B} = \sqrt {\frac{k}{{4m}}} = \frac{1}{2}\sqrt {\frac{k}{m}} = \frac{{{\omega _A}}}{2}\\
= > {\omega _A} = 2{\omega _B}
\end{array}\)

Chọn trục tọa độ Ox trùng với trục của hai lò xo, gốc tọa độ O ở vị trí cân bằng của con lắc A, chiều dương là chiều từ A đến B. Ta viết phương trình dao động của hai con lắc và tìm khoảng cách giữa hai con lắc: 

\(\begin{array}{l}
{x_A} = 8\cos \left( {{\omega _A}t + \pi } \right) = - 8\cos ({\omega _A}t) = - 8\cos \left( {2{\omega _B}t} \right)\\
{x_B} = 64 + 8.\cos \left( {{\omega _B}t + \pi } \right)\\
\Delta d = {x_B} - {x_A} = 64 + 8.\cos \left( {{\omega _B}t + \pi } \right) + 8\cos \left( {2{\omega _B}t} \right)\\
\Leftrightarrow \Delta d = 64 + 8.\left( {2{{\cos }^2}\left( {{\omega _B}t} \right) - 1} \right) - 8\cos \left( {{\omega _B}t} \right)\\
\Leftrightarrow \Delta d = 64 + 8.(2{\cos ^2}\left( {{\omega _B}t} \right) - \cos \left( {{\omega _B}t} \right) - 1)\\
\Leftrightarrow \Delta d = 64 + 8.\left[ {\left( {\sqrt 2 \cos \left( {{\omega _B}t} \right) - 2.\sqrt 2 \cos \left( {{\omega _B}t} \right).\frac{1}{{2\sqrt 2 }} + \frac{1}{8}} \right) - \frac{9}{8}} \right]\\
\Leftrightarrow \Delta d = 64 + 8.{\left( {\sqrt 2 \cos \left( {{\omega _B}t} \right) - \frac{1}{{2\sqrt 2 }}} \right)^2} - 9\\
*{\left( {\sqrt 2 \cos \left( {{\omega _B}t} \right) - \frac{1}{{2\sqrt 2 }}} \right)^2} \ge 0 \Leftrightarrow \Delta {d_{\min }} = 64 + 0 - 9 = 55cm\\
* - 1 \le \cos \left( {{\omega _B}t} \right) \le 1 \Rightarrow \Delta {d_{\max }} = 64 + 8.(2.{( - 1)^2} - ( - 1) - 1) = 64 + 8.2 = 80cm
\end{array}\)

Đáp án cần chọn là: C

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com