Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Giỏ hàng của tôi

Trong khai triển đa thức \(P\left( x \right) = {\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\,\,\,\left( {x > 0} \right)\), hệ số của \({x^3}\) là:

Câu 291557: Trong khai triển đa thức \(P\left( x \right) = {\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\,\,\,\left( {x > 0} \right)\), hệ số của \({x^3}\) là:

A.  60.                             

B.  80.                                         

C.  160.                                       

D.  240.

Câu hỏi : 291557

Phương pháp giải:

Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).

  • Đáp án : A
    (0) bình luận (0) lời giải

    Giải chi tiết:

    Số hạng tổng quát trong khai triển là: \(T = C_6^k{x^{6 - k}}{\left( {\dfrac{2}{{\sqrt x }}} \right)^k} = {2^k}C_6^k{x^{6 - \dfrac{{3k}}{2}}}\)

    Để có số hạng chứa \({x^3}\) khi \(6 - \dfrac{{3k}}{2} = 3 \Leftrightarrow k = 2\)

    Vậy hệ số của \({x^3}\) trong khai triển trên là: \({2^2}C_6^2 = 60\).

    Chọn: A

    Lời giải sai Bình thường Khá hay Rất Hay

Hỗ trợ - HƯớng dẫn

  • 024.7300.7989
  • 1800.6947free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com