Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 2 - Ngày 27-28/12/2025 Xem chi tiết
Giỏ hàng của tôi

Trong khai triển đa thức \(P\left( x \right) = {\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\,\,\,\left( {x >

Câu hỏi số 291557:
Thông hiểu

Trong khai triển đa thức \(P\left( x \right) = {\left( {x + \dfrac{2}{{\sqrt x }}} \right)^6}\,\,\,\left( {x > 0} \right)\), hệ số của \({x^3}\) là:

Đáp án đúng là: A

Quảng cáo

Câu hỏi:291557
Phương pháp giải

Áp dụng Công thức khai triển nhị thức Newton: \({(x + y)^n} = \sum\limits_{i = 0}^n {C_n^i{x^i}.{y^{n - i}}} \).

Giải chi tiết

Số hạng tổng quát trong khai triển là: \(T = C_6^k{x^{6 - k}}{\left( {\dfrac{2}{{\sqrt x }}} \right)^k} = {2^k}C_6^k{x^{6 - \dfrac{{3k}}{2}}}\)

Để có số hạng chứa \({x^3}\) khi \(6 - \dfrac{{3k}}{2} = 3 \Leftrightarrow k = 2\)

Vậy hệ số của \({x^3}\) trong khai triển trên là: \({2^2}C_6^2 = 60\).

Đáp án cần chọn là: A

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com