Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Cho góc nhọn \(xOy\), trên tia \({\rm{O}}x\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA

Câu hỏi số 292128:
Vận dụng

Cho góc nhọn \(xOy\), trên tia \({\rm{O}}x\) lấy điểm \(A\), trên tia \(Oy\) lấy điểm \(B\) sao cho \(OA = OB\). Gọi \(H\) là trung điểm của đoạn thẳng \(AB\).

a) Chứng minh: \(\Delta OAH = \Delta OBH\).

b) Từ \(A\) vẽ đường thẳng vuông góc với đường thẳng \(OA\), đường thẳng này cắt tia OH tại \(C\). Chứng minh: \(AC = BC\).

c) Gọi \(I\) là trung điểm của đoạn thẳng \(OH\), từ \(I\) vẽ đường thẳng vuông góc với cạnh \(OH\), đường thẳng này cắt tia \(OA\) tại \(M\). Chứng minh: \(MI\)//\(AB\).

d) Từ \(H\) vẽ đường thẳng vuông góc với cạnh \(BC\)tại \(K\). Chứng minh ba điểm \(M,\,\,H,\,\,K\) thẳng hàng.

Quảng cáo

Câu hỏi:292128
Phương pháp giải

- Áp dụng các trường hợp bằng nhau của tam giác.

- Tính chất của hai tam giác bằng nhau.

- Áp dụng quan hệ giữa đường thẳng vuông góc và song song.

Giải chi tiết

a) Xét \(\Delta OAH\) và \(\Delta OBH\) ta có:

\(OA = OB\,\,(gt)\)

OH  là cạnh chung

\(HA = HB\,\,\,(gt)\)

Vậy \(\Delta OAH = \Delta OBH\;\;\left( {c - c - c} \right)\) (đpcm)

b) Ta có: \(\Delta OAH = \Delta OBH\;\;\left( {cmt} \right) \Rightarrow \angle AOH = \angle BOH\) (hai góc tương ứng)

Xét \(\Delta AOC\) và \(\Delta BOC\) ta có:

\(\begin{array}{l}OA = OB\,\,\,(gt)\\\angle AOH = \angle BOH\;\;\left( {cmt} \right)\\OC\;\;chung\end{array}\)

Vậy \(\Delta AOC = \Delta BOC\;\;\left( {c - g - c} \right).\)

\( \Rightarrow AC = BC\) (hai cạnh tương ứng)  (đpcm).

c) Xét \(\Delta OAB\) có \(OA = OB \Rightarrow \Delta OAB\) cân tại \(O.\)

Lại có \(OH\) là đường trung tuyến ứng với cạnh \(AB \Rightarrow OH\) vừa là đường cao, đường phân giác của \(\Delta OAB.\) (tính chất)

\( \Rightarrow OH \bot AB = \left\{ H \right\}\;\;hay\;\;\angle OHA = {90^0}.\)

Ta có: \(MI \bot OH\;\;\left( {gt} \right),\;\;AB \bot OH\;\;\left( {cmt} \right)\)

\( \Rightarrow MI//AB\;\;\left( {//OH} \right).\;\;\;\left( {dpcm} \right)\)

d) Xét  \(\Delta MOI\) ta có: \(MI \bot OH\;\;\left( {gt} \right)\) và \(OI = IH\;\;\left( {gt} \right)\)

\( \Rightarrow MI\) vừa là đường cao, vừa là đường trung tuyến ứng với cạnh \(OH \Rightarrow \Delta OMH\) cân tại \(M.\)  (tính chất)

\( \Rightarrow \angle MOI = \angle MHO\) (tính chất).

Lại có: \(\angle MOI = \angle AOH = \angle HOB\;\;\left( {cmt} \right)\)

\( \Rightarrow \angle MHI = \angle HOB\;\;\left( { = \angle MOI} \right)\)

Mà hai góc này ở vị trí so le trong \( \Rightarrow OB//MH\;\;\left( 1 \right)\)

Vì \(\Delta OAC = \Delta OBC\;\;\left( {cmt} \right) \Rightarrow \angle OAC = \angle OBC = {90^0}\) (hai góc tương ứng).

Hay \(OB \bot BC = \left\{ B \right\}.\)

Ta có: \(\left\{ \begin{array}{l}HK \bot BC\;\;\left( {gt} \right)\\OB \bot BC\;\;\left( {cmt} \right)\end{array} \right. \Rightarrow HK//OB\) (từ vuông góc đến song song)   (2)

Từ (1) và (2) ta có: \(\left\{ \begin{array}{l}OB//MH\\OB//HM\end{array} \right. \Rightarrow M,\;H,\;K\)  thẳng hàng (đpcm).

Tham Gia Group Dành Cho 2K12 Chia Sẻ, Trao Đổi Tài Liệu Miễn Phí

>> Học trực tuyến lớp 7 trên Tuyensinh247.com. Đầy đủ khoá học các bộ sách: Kết nối tri thức với cuộc sống; Chân trời sáng tạo; Cánh diều. Cam kết giúp học sinh lớp 7 học tốt, hoàn trả học phí nếu học không hiệu quả. PH/HS tham khảo chi tiết khoá học tại: Link

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com