Tel: 024.7300.7989 - Phone: 1800.6947 (Thời gian hỗ trợ từ 7h đến 22h)

Thi thử toàn quốc cuối HK1 lớp 10, 11, 12 tất cả các môn - Trạm số 1 - Ngày 20-21/12/2025 Xem chi tiết
Giỏ hàng của tôi

Gọi \(S\) là tổng tất cả các giá trị nguyên dương của tham số \(m\) sao cho hàm số \(y =

Câu hỏi số 293223:
Vận dụng

Gọi \(S\) là tổng tất cả các giá trị nguyên dương của tham số \(m\) sao cho hàm số \(y = \dfrac{{2x - {m^2}}}{{x - m - 4}}\) đồng biến trên khoảng \(\left( {2021; + \infty } \right)\). Khi đó, giá trị của \(S\) bằng

Đáp án đúng là: D

Quảng cáo

Câu hỏi:293223
Phương pháp giải

Hàm số \(y = \frac{{ax + b}}{{cx + d}}\) có TXĐ \(D = R\backslash \left\{ { - \frac{d}{c}} \right\}\) đồng biến trên \(\left( {a;b} \right) \Leftrightarrow \left\{ \begin{array}{l}y' > 0\\ - \frac{d}{c} \notin \left( {a;b} \right)\end{array} \right.\).

Sử dụng công thức tính tổng n số hạng đầu tiên của cấp số cộng \({S_n} = \frac{{\left[ {2{u_1} + \left( {n - 1} \right)d} \right].n}}{2}\).

Giải chi tiết

TXĐ: \(D = R{\rm{\backslash }}\left\{ {m + 4} \right\}\)

Ta có: \(y = \frac{{2x - {m^2}}}{{x - m - 4}} \Rightarrow y' = \frac{{{m^2} - 2m - 8}}{{{{\left( {x - m - 4} \right)}^2}}}\)

Để hàm số đồng biến trên khoảng \(\left( {2021; + \infty } \right)\) thì \(\left\{ \begin{array}{l}{m^2} - 2m - 8 > 0\\m + 4 \le 2021\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\left[ \begin{array}{l}m > 4\\m <  - 2\end{array} \right.\\m \le 2017\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}4 < m \le 2017\\m <  - 2\end{array} \right.\)

m nguyên dương \( \Rightarrow \) Tập các giá trị của m thỏa mãn là: \(\left\{ {5;6;7;...;2017} \right\}\).

Tổng các giá trị của m thỏa mãn là:

\(5 + 6 + 7 + ... + 2017 = 1 + 2 + ... + 2017 - \left( {1 + 2 + 3 + 4} \right) = \frac{{\left[ {2.1 + \left( {2017 - 1} \right).1} \right].2017}}{2} - 10 = 2035143\)

Chọn: D

Đáp án cần chọn là: D

Group 2K8 ôn Thi ĐGNL & ĐGTD Miễn Phí

>>  2K8 Chú ý! Lộ Trình Sun 2026 - 3IN1 - 1 lộ trình ôn 3 kì thi (Luyện thi 26+ TN THPT, 90+ ĐGNL HN, 900+ ĐGNL HCM, 70+ ĐGTD - Click xem ngay) tại Tuyensinh247.com.Đầy đủ theo 3 đầu sách, Thầy Cô giáo giỏi, luyện thi theo 3 giai đoạn: Nền tảng lớp 12, Luyện thi chuyên sâu, Luyện đề đủ dạng đáp ứng mọi kì thi.

Hỗ trợ - Hướng dẫn

  • 024.7300.7989
  • 1800.6947 free

(Thời gian hỗ trợ từ 7h đến 22h)
Email: lienhe@tuyensinh247.com